penalty function for path planning of robot in multiple static obstacle environment
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
hi
can any one knows how to add penalty function in the target for path planning of robot using Particle swarm optimization. what i have do until now is following:
clear all
clc
hold on
d=5
pos = [70-d/2 70-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [70-d/2 90-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [10-d/2 10-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [30-d/2 40-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [40-d/2 50-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [70-d/2 40-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [15-d/2 15-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [25-d/2 25-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [10-d/2 85-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [95-d/2 75-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [50-d/2 50-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [80-d/2 75-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [80-d/2 90-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [80-d/2 25-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [50-d/2 10-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [40-d/2 10-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [40-d/2 20-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [20-d/2 40-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
pos = [30-d/2 60-d/2 d d];
rectangle('Position',pos,'Curvature',[1 1])
obstaclex=[70 70 10 30 40 70 15 25 10 95 50 80 80 80 50 40 40 20 30]
obstacley=[70 90 10 40 50 40 15 25 85 75 50 75 90 25 10 10 20 40 60]
obstacle=19
axis([0 100 0 100])
robot1=[0,0];
temp=[0,0];
p1=[1,1;2,2;3,3;1,2;1,3;2,1;2,2;2,3;3,1;3,2]
target=[95,95]
totalparticles=10
% barrier
for h=1:totalparticles
for n=1:obstacle
g(h,n)=1/(-((obstaclex(1,n)-p1(h,1))^2)-((obstacley(1,n)-p1(h,2))^2)+25)
end
end
%penalty
for h=1:totalparticles
for n=1:obstacle
x(h,n)=sqrt((obstaclex(1,n)-p1(h,1))^2+(obstacley(1,n)-p1(h,2))^2)
end
end
for h=1:totalparticles
for n=1:obstacle
rb(h,n)=.5-exp(-2*x(h,n))
end
end
penalty=x.*rb
now, how i process it further. algorithm for barrier and penalty is attached herewith
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Automated Driving Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!