Is this code of Angular Spectrum Method correct?
33 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I constructed my code of the Angular Spectrum Method. However, as the distance between the object and the plane of interest increases, the diffraction pattern never disappears; there is still some sort of a diffraction pattern, and I am expecting that it disappears as distance increases.
Here is the code:
clear; clc;
layer = zeros(499, 499);
diameter = 100*10^(-6);
radius = diameter/2;
wavelength = 500*10^(-9);
altitude = 2*10^(-3);
img_width = 1*10^(-3);
img_length = 1*10^(-3);
lambda = wavelength; % wavelength (meters)
z = altitude; % altitude (meters)
k = 2*pi/lambda; % wavenumber
phy_x = img_width; % physical width (meters)
phy_y = img_length; % physical length (meters)
obj_size = size(layer);
% alpha and beta (wavenumber components)
dx = linspace(-phy_x/2, phy_x/2, obj_size(2));
dx = dx(1:length(dx));
dy = linspace(-phy_y/2, phy_y/2, obj_size(1));
dy = dy(1:length(dy));
for i = 1:obj_size(2);
for j = 1:obj_size(1)
if sqrt(dx(i)^2 + dy(j)^2) <= radius;
layer(j, i) = 1;
end;
end;
end;
U0 = fftshift(fft2(layer));
Fs_x = obj_size(2)/img_width; Fs_y = obj_size(1)/img_length;
dx2 = Fs_x^(-1); dy2 = Fs_y^(-1);
x2 = dx2*(0:(obj_size(2) - 1))'; y2 = dy2*(0:(obj_size(1) - 1))';
dFx = Fs_x/obj_size(2); dFy = Fs_y/obj_size(1);
Fx = (-Fs_x/2:dFx:(Fs_x/2 - dFx)); Fy = (-Fs_y/2:dFy:(Fs_y/2 - dFy));
alpha = lambda.*Fx; beta = lambda.*Fy;
% gamma
gamma = zeros(length(beta), length(alpha));
for j = 1:length(beta);
for i = 1:length(alpha);
if (alpha(i)^2 + beta(j)^2) > 1;
gamma(j, i) = 0;
else
gamma(j, i) = sqrt(1 - alpha(i)^2 - beta(j)^2);
end;
end;
end;
U1 = ifft2(fftshift(fft2(layer)).*exp(1i*k.*gamma.*z));
I1 = (1/(16*pi)).*(U1.*conj(U1));
I think my error came from the calculation of the alpha and beta components. I just don't know where...
Thank you in advance.
0 commentaires
Réponses (1)
Voir également
Catégories
En savoir plus sur Discrete Fourier and Cosine Transforms dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!