Trust-region-dogleg algorithm of FSOLVE cannot handle non-square systems; using Levenberg-Marquardt algorithm instead.
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to obtain a numerical answer for a non linear system with 3 equations and 3 unknowns. When running the code, I receive:
Warning: Trust-region-dogleg algorithm of FSOLVE cannot handle non-square systems; using Levenberg-Marquardt algorithm
instead.
> In fsolve (line 287)
In RegimeTwo (line 60)
Equation solved.
fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
Equation solved. The sum of squared function values, r = 1.832713e-25, is less
than sqrt(options.TolFun) = 1.000000e-03. The relative norm of the gradient of
r, 3.027138e-14, is less than 1e-4*options.TolFun = 1.000000e-10.
Optimization Metric Options
relative norm(grad r) = 3.03e-14 1e-4*TolFun = 1e-10 (selected)
r = 1.83e-25 sqrt(TolFun) = 1.0e-03 (selected)
My code:
opts = optimset('fsolve');
opts = optimset(opts,'Maxiter',700,'Tolx',1e-6,'tolfun',1e-6);
xx = [0 0 0];
nle = fsolve(Switch,xx,opts, lambda,row, mu, mu_one, a, b, c, r, gamma, A, sigma_one, beta1,delta1);
OP = nle(1,1);
EC = nle(1,2);
OC = nle(1,3);
My function:
function [m, VM, SP] = Switch(h,lambda,row, mu, mu_one, a, b, c, r, gamma, A, sigma_one, beta1,delta1)
OP = h(1);
EC = h(2);
OC = h(3);
pi = (lambda+row-mu)/((row+lambda-mu_one)*(row-mu));
m = -OC+((1/(r*b*gamma))*(pi*row*OP-c-r*a))^(1/(gamma-1)) ;
A_hat= (-lambda*A)/ (((sigma_one^2)/2)*beta1*(beta1-1)+(mu_one*beta1)-(row+lambda)) ;
VM = A_hat*(OP^beta1) + EC*(OP^delta1)- (pi*OC*OP)+((c*OC+r*(a*OC+b*(OC^gamma)))/row);
SP = beta1*A_hat*(OP^(beta1-1)) + delta1*EC*(OP^(delta1-1))- (pi*OC);
Any ideas where I am going wrong?
0 commentaires
Réponse acceptée
Torsten
le 17 Juil 2015
function res = Switch(h,lambda,row, mu, mu_one, a, b, c, r, gamma, A, sigma_one, beta1,delta1)
OP = h(1); EC = h(2); OC = h(3);
pi = (lambda+row-mu)/((row+lambda-mu_one)*(row-mu));
m = -OC+((1/(r*b*gamma))*(pi*row*OP-c-r*a))^(1/(gamma-1)) ;
A_hat= (-lambda*A)/ (((sigma_one^2)/2)*beta1*(beta1-1)+(mu_one*beta1)-(row+lambda)) ;
VM = A_hat*(OP^beta1) + EC*(OP^delta1)- (pi*OC*OP)+((c*OC+r*(a*OC+b*(OC^gamma)))/row);
SP = beta1*A_hat*(OP^(beta1-1)) + delta1*EC*(OP^(delta1-1))- (pi*OC);
res(1,1) = m;
res(2,1) = VM;
res(3,1) = SP;
Best wishes
Torsten.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Gamma Functions dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!