Info
Cette question est clôturée. Rouvrir pour modifier ou répondre.
Can I avoid this slow for loop?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am writing a program to compute a value function which is defined over a 3 dimensional state space. It's a dynamic programming problem which I have managed to reduce to 2 control variables. The code works, but every iteration takes about 1 minute and it takes about 100 iterations to reach convergence. Is there a simple way to get rid of the "for" loop and vectorize also that part of the code? Thanks
%STATE SPACE;
mu=(0.01:0.01:.9);
b=-3:.05:0;
delta=0.01:0.05:1.2;
[DELTA,B,MU]=meshgrid(delta,b,mu);
iter=1;
norm=1001;
tol=.001;
% Initial Guess for Value Function
V0=0.*DELTA;
%Control variables grid
y=[ya:0.05:yb];
[CA,CB]=meshgrid(y,y);
iter=1;
norm=1001;
tol=.01;
%Main loop
while norm>tol
for i=1:length(mu)
for j=1:length(b)
for z=1:length(delta)
dp=f(mu(i),b(j),delta(z),CB,CA);
bp=g(mu(i),b(j),delta(z),CB,CA);
mup=h(mu(i),b(j),delta(z),CB,CA);
fval= l(mu(i),CA,CB)+beta*interp3(DELTA,B,MU,V0,dp,bp,mup,'linear');
[mr mc]=find(fval==max(max(fval)));
V1(j,z,i)=fval(mr(1),mc(1));
end
end
end
toc
norm(iter)=max(max(max(abs(V0-V1))))
V0=V1;
iter=iter+1
end
0 commentaires
Réponses (1)
Varun Bhaskar
le 25 Août 2015
Hi Filippo,
You can parallelize your code to be executed on different cores on your machine. You can find more information about the 'parfor' loop construct in the following link :
1 commentaire
Cette question est clôturée.
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!