Use Classification Neural Network Model for another Dataset
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
mustafa alnasser
le 19 Sep 2015
Commenté : Greg Heath
le 20 Sep 2015
Dear All; I have built an AI model to classify the data using a dataset. Then i try to test this model to classify an external data set but it does not work properly because the code is not properly made , the code is below , could you help me in that :
clc; clear; close all; %Read The data [x1,TXT,RAW]=xlsread('ALL2.xlsx','lnRe'); [t1,TXT2,RAW2]=xlsread('ALL2.xlsx','OUT2');
x=x1';
t=t1';
% Build the model
net= patternnet ([100]);
% net.divideParam.trainRatio = 70/100;
% net.divideParam.valRatio = 15/100;
% net.divideParam.testRatio = 15/100;
% view(net)
net=init(net);
[net,tr] = train(net,x,t);
% Test the Network [x2,TXT3,RAW3]=xlsread('expsettest.xlsx','Ln(Re)'); [t2,TXT4,RAW4]=xlsread('expsettest.xlsx','out-test'); xt=x2'; tt=t2'; outputs = net( xt); errors = gsubtract(tt,outputs); performance = perform(net,tt,outputs)
figure, plotconfusion(tt,outputs)
0 commentaires
Réponse acceptée
Greg Heath
le 20 Sep 2015
100 hidden nodes appears to be a ridiculous number.
Why don't you start by just using all defaults.
help patternnet
doc patternnet
Then Search NEWSGROUP and ANSWERS using
greg patternnet
Hope this helps.
Thank you for formally accepting my answer
Greg
2 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!