Gerchberg–Saxton algorithm
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hello! I have the following code:
for k=1:1:20;
G_pr=absP.*exp(i.*theta);
g_pr=ifft2(ifftshift(G_pr));
absPhase=abs(angle(g_pr));
maxPh=max(max(absPhase));
minPh=min(min(absPhase));
g_pr(absPhase>=(minPh+0.2*(maxPh-minPh)))=0;
g_pr=real(g_pr);
gg=255*g_pr/(max(max(g_pr)));
figure(1),imshow(uint8(gg)); title(num2str(k))
G=fftshift(fft2(g_pr));
G=G./abs(G);
theta=angle(G);
end
The first theta is the phase of my model image (angle(model)) However, this code diverges instead of converge, Does someone knows why?
Thank you
2 commentaires
Image Analyst
le 27 Sep 2015
You haven't given us enough code to even run your snippet that you posted here. Can't you step through it with the debugger to find out why?
Réponse acceptée
PNZ BDCB
le 25 Oct 2017
I'm not sure where in your code is the error. The following code works perfectly for me (adopted from wikipedia):
A = fftshift(ifft2(fftshift(Target)));
for i=1:25
B = abs(Source) .* exp(1i*angle(A));
C = fftshift(fft2(fftshift(B)));
D = abs(Target) .* exp(1i*angle(C));
A = fftshift(ifft2(fftshift(D)));
imagesc(abs(C)) %Present current pattern
title(sprintf('%d',i));
pause(0.5)
end
Before running the code, make sure 'Source' contains your input beam, for example:
Source = exp(-1/2*(xx0.^2+yy0.^2)/sigma^2);
And 'Target' contains your requested pattern.
The phase mask can be presented at the end of the for loop:
imagesc(angle(A))
1 commentaire
Isaac Oguntoye
le 31 Mai 2018
Thanks for the response. Did you consider using your code for a simple image like a dot? Thanks.
Plus de réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!