Solving Linear Equation of a Scattering Problem

2 vues (au cours des 30 derniers jours)
Burak
Burak le 14 Oct 2015
Modifié(e) : Burak le 14 Oct 2015
There is an equation I need to solve like this;
Ln+an*Mn=∑Nnm*cm On+an*Pn=∑Qnm*cm summation for m's -infinity to infinity
Ln,Mn,Nnm,On,Pn are known.an,cm are unknown. I need to get an for calculation. If anyone can help me , I'll appreciate.
Here is my code:
clear all
format long
tic
N_cut=20;
eps0=(10^-9)/(36*pi);
mu0=4*pi*10^-7;
epsr1=1.;
epsr2=2.7;
mur1=1.;
mur2=1.;
eps1=epsr1*eps0;
eps2=epsr2*eps0;
mu1=mur1*mu0;
mu2=mur2*mu0;
freq=900*10^6;
omeg=2*pi*freq;
sigma2=3e-7;
k0=omeg*sqrt(eps0*mu0);
k1=sqrt(omeg*omeg*eps2*mu2+1i*omeg*sigma2*mu2);
lambda=2*pi/k0;
a0=4.25e-2;
a1=3e-3;
d=1e-2;
phi_prime=pi/4;
nu0=sqrt(mu0/eps0);
nu1=sqrt((1i*omeg*mu0)/(sigma2+1i*omeg*eps2));
M_phi=180;
phibegin=0;
phiend=2*pi;
deltaphi=(phiend-phibegin)/M_phi;
phig=phibegin:deltaphi:phiend;
R_obs=4.2555e-2;
for n=1:N_cut L(n)=((-1j)^n)*besselj(n,k0*a0); M(n)=((-1j)^n)*besselh(n,2,k0*a0); bessel_der_1(n)=0.5*(besselj(n-1,k0*a1)-besselj(n+1,k0*a1)); hankel_der_1(n)=0.5*(besselh(n-1,2,k0*a1)-besselh(n+1,2,k0*a1)); bessel_der_2(n)=0.5*(besselj(n-1,k1*a1)-besselj(n+1,k1*a1)); hankel_der_2(n)=0.5*(besselh(n-1,2,k1*a1)-besselh(n+1,2,k1*a1)); O(n)=(1/nu0)*((-1j)^n)*bessel_der_1(n); P(n)=(1/nu0)*((-1j)^n)*hankel_der_1(n); for m=1:N_cut K(m)=(-besselh(m,2,k1*a1))/(besselj(m,k1*a1)); N(n,m)=((-1j)^m)*besselj(n-m,k1*d)*besselj(n,k1*a1)*exp(-1j*(n-m)*phi_prime)*K(m)+((-1j)^m)*besselj(n-m,k1*d)*besselh(n,2,k1*a1)*exp(-1j*(n-m)*phi_prime); Q(n,m)=((1/nu1)*((-1j)^m)*besselj(n-m,k1*d)*bessel_der_2(n)*exp(-1j*(n-m)*phi_prime)*K(m)+(1/nu1)*((-1j)^m)*besselj(n-m,k1*d)*hankel_der_2(n)*exp(-1j*(n-m)*phi_prime));
end
end
for mg=1:M_phi+1 for n=1:N_cut Es(mg,n)=((-1j)^n)*(a(n)*besselh(n,2,k0*R_obs))*exp(-1j*n*phig(mg)); end end F_Es=sum(Es,2); figure plot(rad2deg(phig),abs(F_Es),'r') grid on

Réponses (0)

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by