Solving Linear Equation of a Scattering Problem
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
There is an equation I need to solve like this;
Ln+an*Mn=∑Nnm*cm On+an*Pn=∑Qnm*cm summation for m's -infinity to infinity
Ln,Mn,Nnm,On,Pn are known.an,cm are unknown. I need to get an for calculation. If anyone can help me , I'll appreciate.
Here is my code:
clear all
format long
tic
N_cut=20;
eps0=(10^-9)/(36*pi);
mu0=4*pi*10^-7;
epsr1=1.;
epsr2=2.7;
mur1=1.;
mur2=1.;
eps1=epsr1*eps0;
eps2=epsr2*eps0;
mu1=mur1*mu0;
mu2=mur2*mu0;
freq=900*10^6;
omeg=2*pi*freq;
sigma2=3e-7;
k0=omeg*sqrt(eps0*mu0);
k1=sqrt(omeg*omeg*eps2*mu2+1i*omeg*sigma2*mu2);
lambda=2*pi/k0;
a0=4.25e-2;
a1=3e-3;
d=1e-2;
phi_prime=pi/4;
nu0=sqrt(mu0/eps0);
nu1=sqrt((1i*omeg*mu0)/(sigma2+1i*omeg*eps2));
M_phi=180;
phibegin=0;
phiend=2*pi;
deltaphi=(phiend-phibegin)/M_phi;
phig=phibegin:deltaphi:phiend;
R_obs=4.2555e-2;
for n=1:N_cut L(n)=((-1j)^n)*besselj(n,k0*a0); M(n)=((-1j)^n)*besselh(n,2,k0*a0); bessel_der_1(n)=0.5*(besselj(n-1,k0*a1)-besselj(n+1,k0*a1)); hankel_der_1(n)=0.5*(besselh(n-1,2,k0*a1)-besselh(n+1,2,k0*a1)); bessel_der_2(n)=0.5*(besselj(n-1,k1*a1)-besselj(n+1,k1*a1)); hankel_der_2(n)=0.5*(besselh(n-1,2,k1*a1)-besselh(n+1,2,k1*a1)); O(n)=(1/nu0)*((-1j)^n)*bessel_der_1(n); P(n)=(1/nu0)*((-1j)^n)*hankel_der_1(n); for m=1:N_cut K(m)=(-besselh(m,2,k1*a1))/(besselj(m,k1*a1)); N(n,m)=((-1j)^m)*besselj(n-m,k1*d)*besselj(n,k1*a1)*exp(-1j*(n-m)*phi_prime)*K(m)+((-1j)^m)*besselj(n-m,k1*d)*besselh(n,2,k1*a1)*exp(-1j*(n-m)*phi_prime); Q(n,m)=((1/nu1)*((-1j)^m)*besselj(n-m,k1*d)*bessel_der_2(n)*exp(-1j*(n-m)*phi_prime)*K(m)+(1/nu1)*((-1j)^m)*besselj(n-m,k1*d)*hankel_der_2(n)*exp(-1j*(n-m)*phi_prime));
end
end
for mg=1:M_phi+1 for n=1:N_cut Es(mg,n)=((-1j)^n)*(a(n)*besselh(n,2,k0*R_obs))*exp(-1j*n*phig(mg)); end end F_Es=sum(Es,2); figure plot(rad2deg(phig),abs(F_Es),'r') grid on
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!