classification
15 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I want to learn how to do classification using Neural Network in Matlab Having Elliptical Basis Function , Can any one help .... Code is attached
What I know is that first I need to create NN and then make Decision Making
Function ( Elliptical Basis Function )
tic
maxround = 5;
hiddenLayerSize = [3 5 7 10 13];
errors = zeros(maxround,1);
trainPerformance = zeros(maxround,1);
valPerformance = zeros(maxround,1);
testPerformance = zeros(maxround,1);
timedata = zeros(maxround,1);
NoofNeurons = zeros(maxround,1);
Accuracy = zeros(maxround,1);
TestFold = zeros(maxround,1);
NoOfClasses = zeros(maxround,1);
NoofInstances = zeros(maxround,1);
SizeofInputLayer = zeros(maxround,1);
for i=1: maxround
net = patternnet(hiddenLayerSize);
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
NoOfinputs = net.inputs
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
NoOfOutPuts = net.outputs
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainFcn = 'trainlm'; % Levenberg-Marquardt
net.performFcn = 'mse'; % Mean squared error
[net,tr] = train(net,inputs,targets);
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance(i) = perform(net,targets,outputs);
trainTargets = targets .* tr.trainMask{1};
valTargets = targets .* tr.valMask{1};
testTargets = targets .* tr.testMask{1};
trainPerformance(i) = perform(net,trainTargets,outputs);
valPerformance(i) = perform(net,valTargets,outputs);
testPerformance(i) = perform(net,testTargets,outputs);
NoofNeurons(i) = hiddenLayerSize(1);
NameofDataSet = 'Heart';
TestFold(i) = i;
NoOfClasses(i) = size(targets,1); % Number of classed to be classified
NoofInstances(i) = size(targets,2); % Number of Instances
SizeofInputLayer(i) = size(inputs,2);
end
1 commentaire
Réponse acceptée
Greg Heath
le 4 Jan 2012
2 commentaires
Greg Heath
le 8 Jan 2012
Modifié(e) : Greg Heath
le 22 Nov 2014
IGNORE THIS COMMENT OF 8 JAN 2012. IT IS BASED ON FAULTY LOGIC. FOR ANY OTHER VALUE OF THE LINEAR COMBINATION THAN ZERO, THE CONTOURS ARE ELLIPTIC. =========================================================================== WHOOPS! MY APOLOGIES!
I have just realized that , in general, NEWFF with RADBAS will not create EBFs. Consider a two-input net with w11*x1+w12*x2 + b1 the argument of RADBAS.
Obviously, exp(-(w11*x1+w12*x2+b1)^2) is equal to 1 along the line 0 =w11*x1+w12*x2+b1. Therefore the constant level contours are not ellipses.
Sorry for the bum steer.
Greg
Puneet Arora
le 16 Jan 2012
Then what do you suggest .. I need to change the H and O , My I-H-O is structure : 1 (inputs)-H- 4 (Outputs) and H = [1 2 4 8 16 32 64]
net = newff(minmax(ptrn),[H O],{'radbas', 'purelin'});
I m doing classification iris dataset ...
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!