Does anyone know how to figure out a workaround to avoid computing overflow/underflow/NaN/inf in this algorithm?
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
M14 = Signal.^14;
M12 = Signal.^12 ; M10 = Signal.^10;
M8 = Signal.^8 ; M6 = Signal.^6;
M4 = Signal.^4 ; M2 = Signal.^2;
S14 = Sigma.^14;
S12 = Sigma.^12 ; S10 = Sigma.^10;
S8 = Sigma.^8 ; S6 = Sigma.^6;
S4 = Sigma.^4 ; S2 = Sigma.^2;
nPiD2 = pi/2;
sqrtNpiD2 = sqrt(nPiD2);
n1D2 = 1/2;
n1D4 = 1/4;
n1DM10Sig = 1./(M10.*Sigma);
n1DM12Sig = 1./(M12.*Sigma);
alpha = M2./S2;
nAlphaD4 = n1D4*alpha;
FirstTerm = n1DM10Sig.*(M12 + 9*M10.*S2 - 15*M8.*S4 + 90*M6.*S6 - 495*M4.*S8 + 2160*M2.*S10 - 5760*S12).*besseli(0,nAlphaD4);
SecondTerm = n1DM12Sig.*(M14 + 7*M12.*S2 - 27*M10.*S4 + 150*M8.*S6 - 855*M6.*S8 + 4320*M4.*S10 - 17280*M2.*S12 + 46080*S14).*besseli(1,nAlphaD4);
biasedSignal = n1D2*sqrtNpiD2*exp(-nAlphaD4).*(FirstTerm + SecondTerm);
As you can imagine, because of the powers of these numbers being rather high, I am running into issues with computing inf/NaN where I don't actually want it. Is there a way to avoid computing these values?
0 commentaires
Réponse acceptée
Jan
le 15 Nov 2015
You can calculate the logarithm of all equations to keep the ranges of the values inside the limits. Replace besseli by its taylor series to build its log.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!