The non-seasonal moving average polynomial is non-invertible
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi everyone,
I am trying to simulate and estimate an arma(3,3) process:
model = arima('Constant',0.5,'AR',{0.5;0.3;0.01},'MA',{0.3;0.2;0.1},'Variance',1);
rng('shuffle')
Y = simulate(model,1000);
mod=arima(3,0,3);
[EstMdl] = estimate(mod,Y);
I've created a loop to do this 1000 times. After some iterations (I've already got 300 results before the error message), the following error message appears:
Error using arima/validateModel (line 1290)
The non-seasonal autoregressive polynomial is unstable.
Error in arima/setLagOp (line 401)
OBJ = validateModel(OBJ);
Error in arima/estimate (line 1086)
OBJ = setLagOp(OBJ, 'AR' , LagOp([1 -coefficients(iAR)' ], 'Lags', [0 LagsAR ])
Why does this happen? And why this happen only after some iterations? What can I do to avoid the error?
Best regards
Roberto
1 commentaire
Seemant Tiwari
le 29 Jan 2024
hi,
can you tell me, how are you calculating these values?
'constant', o.5, 'ar',{ 0.5,0.3,0.1}, 'ma', {0.3,,0.2,0.1} ??
i have 1 year hourlywind speed data 365x24 = 8760
i have calculate p, d, q value my p value is 1, q value is 0 and d value is 1.
now i want to create model but i am not understanding how can i calculate 'AR' MA' values.
Thank you
Réponses (1)
Hang Qian
le 28 Déc 2015
Hi Roberto,
The error message “the non-seasonal autoregressive polynomial is unstable” indicates that some of the eigenvalues of the AR part of the series are outside the unit circle, hence non-stationarity. Similarly, the error “the non-seasonal moving average polynomial is non-invertible” shows explosion of the MA roots, hence non-invertibility.
Practically it is not a good idea to fit a high-order ARMA model. It might require a huge sample size to provide a good estimate on a ARMA(3,3) model, even if the data are simulated from the true model. To avoid those error messages, be parsimonious in model specification, say ARMA(1,1). If you really want a high-order model, you may consider informative priors to shrink the coefficients.
Thank you.
Regards,
Hang Qian
1 commentaire
Seemant Tiwari
le 29 Jan 2024
hello,
i have hourly wind speed data, no. of data is 8760
i have calculate p, d, q value
p = 1
d = 0
q = 1
now i want to create arima model.
can you tell me, how can i calculate these value
MD =ARIMA(CONSTANT (? ), 'AR (?), 'SAR' (?), 'SMA' (?), 'VARIANCE' (?))
Thank you
Voir également
Catégories
En savoir plus sur Conditional Mean Models dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!