Formula for number of unknown weights in Recurrent Neural Network
    5 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
Given a recurrent neural network with two hidden layers, with "I" represent the number of features of inputs, "O" represent the number of outputs. H1 and H2 represent the number hidden neurons in layer 1 and 2. What will be the formula for number of synaptic connections in Recurrent Neural Networks in terms of I, O, H1 and H2.
1 commentaire
  Greg Heath
      
      
 le 8 Jan 2016
				
      Modifié(e) : Greg Heath
      
      
 le 8 Jan 2016
  
			I. Be specific:
   MATLAB Version: 8.3.0.532 (R2014a)
   Neural Network Toolbox  Version 8.2  (R2014a)
>> lookfor recurrent
 layrecnet - Layered recurrent neural network.
 newhop    - Design a Hopfield recurrent network.
 newlrn    - Create a Layered-Recurrent network.
II. Why don't you consider layrecnet and newlrn
 A. Read the help documentation
 B. Read the  doc documentation
 C. Modify the corresponding code examples
    1. net1 with H2=0 
    2. Consider view(net1)and   
        Nw1 = net1.numWeightElements
    3. Repeat 1 and 2 for net2 with H2~=0
III. I will compare my results with yours
Have fun,
Greg
Réponses (0)
Voir également
Catégories
				En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

