Cluster-Robust Standard Errors in Maximum Likelihood Estimation
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am estimating a model on pooled panel data by Maximum Likelihood using fminunc. I want to compute the cluster-robust standard errors after the estimation. This is a sandwich estimator, where the "bread" is given by the inverse Hessian and the "meat" involves the contribution of the k-th group to the score vector. I get the Hessian straight out of the fminunc algorithm.
But: How do I use the fminunc output to compute the contribution of the k-th group to the score vector?
Or, how would I alternatively compute the cluster-robust standard errors after minimizing the minus log-Likelihood function?
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!