Area calculation of a fitted gaussian curve
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Emanuele Gandola
le 25 Jan 2016
Réponse apportée : Torsten
le 25 Jan 2016
Hallo everybody, and thanks in advance for the attention.
I have a vactor of numbers that represent a normalized distribution. Is very easy with the fit commad approximate with one or more gaussian curves the distribution.
Es.
f = fit(x.',y.','gauss2')
f = General model Gauss2:
f(x) = a1*exp(-((x-b1)/c1)^2) + a2*exp(-((x-b2)/c2)^2)
Coefficients (with 95% confidence bounds):
a1 = 0.03666 (0.02839, 0.04493)
b1 = 8.072 (7.821, 8.324)
c1 = 0.7271 (0.5048, 0.9495)
a2 = 0.06823 (0.06531, 0.07116)
b2 = 13.26 (12.95, 13.57)
c2 = 7.753 (7.358, 8.148)
a represent the amplitude, b the average and c the variance. In this way the two groups of coefficients represents two gaussian curves. Now I'd like to calculate the integral or an estimation of it, to know the weigth of each curve on the rappresentation.
Thanks a lot! Emanuele
0 commentaires
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!