Normal Regression vs Robust Regression

13 vues (au cours des 30 derniers jours)
Nikhil
Nikhil le 3 Fév 2016
Modifié(e) : Nikhil le 3 Fév 2016
Hello all,
I am doing regression analysis using Curve Fitting tool available in MATLAB. Aim is to find a polynomial function between 2 design variables and 1 response i.e. z=f(x,y). I used robust regression methods from curve fitting tool box and fitlm(,,'RobustOpts','on') function. Both of them gives same estimates for polynomial coefficients but different R-square and adjusted R-square values. So can somebody please tell me which one of them is correct? Is the R-square (for robust regression) from curve fitting tool is more accurate or one from fitlm() function is more accurate?
Thank you in advance,
Nik

Réponses (0)

Catégories

En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by