Generating random numbers

1 vue (au cours des 30 derniers jours)
Atakan
Atakan le 22 Jan 2012
I want to write a Matlab code for generating “m” numbers from N(0,1) using following algorithm. My code should be a general code for “m”, “mu” & “sigma”.
1.Generate u1, u2 from UNIF(0,1), then set y=tan(pi*(u1-1/2))
2.If u2 <= (sqrt(e)/2)*(1+y^2)*e^((-y^2)/2) then set x=y, otherwise go to step 1
3.Repeat 1-2 until you generate m numbers.
this is my code:
function [randnormal]=atakan(a,b,m) randnormal=[];
count=1;
while (count<=m) R = normrnd(a,b);
u1=unifrnd(0,1);
u2=unifrnd(0,1);
y=tan(pi*(u1-1/2));
if (u2<=((sqrt(exp(1))/2)*(1+y^2)*(exp(1)^(-y^2/2))))
randnormal=[R;y];
end
count=count+1;
end
  1 commentaire
Jan
Jan le 22 Jan 2012
You forgot to ask a question.
Please format the code correctly using the information provided at the "Markup help" link.

Connectez-vous pour commenter.

Réponse acceptée

Atakan
Atakan le 24 Jan 2012
function x = atakan(mu,sigmasqroot,m)
count=0; x=[]; y=[];
while (count<m)
u1=rand;
u2=rand;
y=tan(pi*(u1-(1/2)));
test=((sqrt(exp(1))/2)*(1+(y^2))*((exp(1)^((-y^2)/2))));
if (u2<=test)
z=sqrt(sigmasqroot)*(y+mu); % if x~N(0,1) then sigma*(x+mu)~N(mu,sigma^2) then set x=y;
x=[x; z];
count=count+1;
end
end
  1 commentaire
the cyclist
the cyclist le 24 Jan 2012
Just so you know, "growing" your array x in this way is extremely inefficient, computationally, because MATLAB will need to continually reallocate memory for the ever-larger array. The method in my solution, in which I preallocate the memory before the while loop, will be stupendously faster for large values of m.

Connectez-vous pour commenter.

Plus de réponses (1)

the cyclist
the cyclist le 23 Jan 2012
You were overwriting your random numbers, rather than storing all "m" of them, and you were not tracking the counting of successes properly. Does this work better? (I did not check any other part of your algorithm.)
function [randnormal]=atakan(a,b,m)
randnormal=zeros(2,m);
count=1;
while (count<=m)
R = normrnd(a,b);
u1=unifrnd(0,1);
u2=unifrnd(0,1);
y=tan(pi*(u1-1/2));
if (u2<=((sqrt(exp(1))/2)*(1+y^2)*(exp(1)^(-y^2/2))))
randnormal(:,count)=[R;y];
count=count+1;
end
end
end
  2 commentaires
Atakan
Atakan le 23 Jan 2012
Thanks again. I have solved it by another way.
James Tursa
James Tursa le 23 Jan 2012
What way? Can you post your method so others can see and not leave this thread dangling?

Connectez-vous pour commenter.

Catégories

En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by