NARXNET with input delay
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ghazi Binarandi
le 13 Fév 2016
Commenté : Ghazi Binarandi
le 18 Fév 2016
Hi,
I am solving a problem incorporating measurement delay in a sensor. I have a set of measured acceleration based on the sensor reading (in time series). However, the measurements that I obtained have some time delay from the 'true' value of it. I want to design a neural network that can 'predict' the true acceleration value using the measured value that I obtained from the sensor measurement.
I am using NARXNET to model the neural network of it. To accommodate the delay in the input, 'inputDelays' is adjusted according to the delay in the sensor measurement (and, technically, no delay is needed for the 'feedbackDelays'). Am I doing it correctly?
Thank you,
Ghazi
0 commentaires
Réponse acceptée
Greg Heath
le 14 Fév 2016
No.
TIMEDELAYNET is used to predict an output series, y, using an exogeneous external input series x.
NARXNET is used to predict an output series, y, using BOTH an exogeneous external input series x, along with feedback signals from the previous estimated values of y.
HOWEVER, you do not have an exogeneous external input series!
Therefore, you should use NARNET. First read the documentation
help narnet
doc narnet
Then search for some of my posts in BOTH the NEWSGROUP AND ANSWERS using
narnet greg
and
narnet greg tutorial
Begin by finding the statistically significant nonzero lags at the highest local peaks of the measurement autocorrelation function. Search
nncorr narnet
Then use as small a continuous subset of lags as needed for your predictions.
Hope this helps.
Thank you for formally accepting my answer
Greg
6 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!