increase compute speed compute angle between 2 vectors
15 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
hi, I'm student in a space compagny and I have built a matlab soft to compute orbit , but the run take more than 48h, in fact, one function was call more than billion time, and also I search to win some milliseconde in my funtion.
this funtion compute angle between 2 vectors input : 2 vectors v & u (3 by n) output : angle between u and v in rad (n by 1)
here after the code , but I don't find more solution to optimize it :
function angle = searchAngle(u, v)
norm = @(v) sqrt(sum(v.^2, 2));
dot = @(u, v) sum(u .* v, 2);
cross = @(a, b) [ a(:,2) .* b(:,3) - a(:,3) .* b(:,2), ...
a(:,3) .* b(:,1) - a(:,1) .* b(:,3), ...
a(:,1) .* b(:,2) - a(:,2) .* b(:,1) ];
normVect = norm(u) .* norm(v);
dotVect = dot(u, v);
threshold = normVect * 0.9999;
idx1 = dotVect > threshold;
axis = cross(v(idx1,:), u(idx1,:));
angle(idx1) = asin(norm(axis) ./ normVect(idx1));
idx2 = dotVect < -threshold;
axis = cross(v(idx2,:), u(idx2,:));
angle(idx2) = pi - asin(norm(axis) ./ normVect(idx2));
idx = ~(idx1 | idx2);
angle(idx) = acos(dotVect(idx) ./ normVect(idx));
end
thx for any help
3 commentaires
Réponse acceptée
Jan
le 17 Fév 2016
The indirection of anonymous functions costs time. So either use the built-in functions with the same names cross, norm and dot, or hard code the functions directly.
Instead of the expensive trick to determine the positions of instabilities in the ASIN and ACOS methods, use a stable method directly:
atan2(norm(cross(N1 x N2)), dot(N1, N2))
Where N1 and N2 are the normalized input vectors.
N1 = bsxfun(@rdivide, a, sqrt(sum(a .* a ,1)))
N2 = bsxfun(@rdivide, b, sqrt(sum(b .* b ,1)))
N1dotN2 = N1(:, 1) .* N2(:, 1) + N1(:, 2) .* N2(:, 2) + N1(:, 3) .* N2(:, 3);
N1xN2 = [(N1(:, 2) .* N2(:, 3) - N1(:, 3) .* N2(:, 2)), ...
(N1(:, 3) .* N2(:, 1) - N1(:, 1) .* N2(:, 3)), ...
(N1(:, 1) .* N2(:, 2) - N1(:, 2) .* N2(:, 1))];
Angle = atan2(sqrt(sum(N1xN2 .* N1xN2, 1)), N1dotN2);
6 commentaires
Jan
le 19 Fév 2016
Modifié(e) : Jan
le 19 Fév 2016
And you provide this [222651 x 3] matrix as input, or do you call the function in a loop for each [1 x 3] vector? The command norm(u) in your code seems to imply, that you call it for vectors. The code in my answer can process the complete matrix in one call, which should be substantially faster. Even a fast C-Mex function, which avoids the creation of large temporary arrays, would suffer from beeing called hundret thousands of times due to the calling overhead.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!