How to find state transition matrix with symbolic parameters efficiently
    96 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
    xianjie Zhou
      
 le 17 Fév 2016
  
    
    
    
    
    Déplacé(e) : Dyuman Joshi
      
      
le 23 Déc 2023
            Hi
I am going to find the state transition matrix of a 4x4 system. But matlab ran for a long time without giving a solution. Is there any other ways to find the solution?
Thanks
syms t
A=[-2.1  -0.98  -0.158 -2.05
2.22  -11.03  0  0
-27.64 0.19 -6.39 -82.6
0  0  1  0]
TM=expm(A*t)
0 commentaires
Réponse acceptée
  Arnab Sen
    
 le 23 Fév 2016
        Hi xianjie,
I tried to execute the code you provided and found the same issue that it's running long time without giving the output. I investigated into it and found that the function 'expm' is defined as:
 >> [V,D] = eig(X)
 >> expm(X) = V*diag(exp(diag(D)))/V
Now I found that the right matrix division 'mrdivide'('/') is taking long time. I am not sure why it's taking so long. However, right matrix division '/' can be approximated as matrix inverse 'inv' followed by matrix multiplication. That is, A/B can be approximated by the operation A*inv(B). So, as a workaround, you may consider the following code snippet to achieve the same functionality:
>>syms t;
>>A=[-2.1  -0.98  -0.158 -2.05
2.22  -11.03  0  0
-27.64 0.19 -6.39 -82.6
0  0  1  0];
>>X=A*t;
>>[V,D]=eig(X);
>>TM=(V*diag(exp(diag(D))))* inv(V)
For more details, refer to the following link:
3 commentaires
  khaled elmoshrefy
 le 3 Juil 2020
				
      Déplacé(e) : Dyuman Joshi
      
      
 le 23 Déc 2023
  
			hi, what is t in the exp ?
  ISLAM (伊兰沐)
 le 23 Déc 2023
				
      Modifié(e) : ISLAM (伊兰沐)
 le 23 Déc 2023
  
			Thank you so much! I tried 2x2 matrix I am pasting my code here. 
syms t;
A=[0 1; -4 -5];
%State Transition matrix
X=A*t;
[V,D]=eig(X);
STM=(V*diag(exp(diag(D))))* inv(V)
Output
[    (4*exp(-t))/3 - exp(-4*t)/3,     exp(-t)/3 - exp(-4*t)/3]
[(4*exp(-4*t))/3 - (4*exp(-t))/3, (4*exp(-4*t))/3 - exp(-t)/3]
Its correct!
Plus de réponses (0)
Voir également
Catégories
				En savoir plus sur Linear Algebra dans Help Center et File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



