- Use 'fft' to transform both the convolved signal and the convolution kernel to the frequency domain
- Divide the FFT of the convolved signal by the FFT of the convolution kernel.
- Transform the result back to the time domain using the inverse FFT 'ifft'.
deconvolution problem
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
hello! i made a circular convolution each line of a data matrix(80,2048)with a h(1,2048).till here every good.
c=[]; for i = 1:size(ofdmsignal,1);
c=[c cconv(h,ofdmsignal(i,:),length(h))]; i; end
h=(1,2048) complex numbers ofdmsignal=(80,2048) complex numbers
how i can make dconvolution to take my original signal(ofdm signal)?????
i'll be very thankfull!!!!!!
0 commentaires
Réponses (1)
nick
le 16 Avr 2025
Hello jordi,
To perform deconvolution and retrieve the OFDM signal from the circularly convolved signal, you can follow these steps:
% Example signals
h = randn(1, 2048) + 1i * randn(1, 2048);
ofdmsignal = randn(80, 2048) + 1i * randn(80, 2048);
c = [];
for i = 1:size(ofdmsignal, 1)
c = [c; cconv(h, ofdmsignal(i, :), length(h))]; % Perform circular convolution
end
%% Deconvolution
h_fft = fft(h); % FFT of the convolution kernel
deconvolved_signal = zeros(size(ofdmsignal));
for i = 1:size(c, 1)
% FFT of the convolved signal
convolved_fft = fft(c(i, :));
deconv_fft = convolved_fft ./ h_fft;
deconvolved_signal(i, :) = ifft(deconv_fft);
end
row_index = 1;
original_signal = ofdmsignal(row_index, :);
retrieved_signal = deconvolved_signal(row_index, :);
fprintf('Original Signal (first 5 elements):\n');
disp(original_signal(1:5));
fprintf('Retrieved Signal (first 5 elements):\n');
disp(retrieved_signal(1:5));
figure;
subplot(2, 1, 1);
plot(abs(original_signal));
title('Original Signal Magnitude');
xlabel('Sample Index');
ylabel('Magnitude');
subplot(2, 1, 2);
plot(abs(retrieved_signal));
title('Retrieved Signal Magnitude');
xlabel('Sample Index');
ylabel('Magnitude');
Kindly refer to the documentation by executing the following command in MATLAB Command Window to know more about 'fft' and 'ifft' functions:
doc fft
doc ifft
0 commentaires
Voir également
Catégories
En savoir plus sur Data Distribution Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
