Determining periods using Continuous Wavelet Transform
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I have a signal which contains some quasi-periodic patterns which I would like to determine.
As its spectral content changes with time, I think that Wavelet analysis is the method which best fits to my purpose. So that, I was wondering if there exists a canonical way to detect reasonable periods in this signal by looking to CWT coefficients.
0 commentaires
Réponse acceptée
Wayne King
le 28 Jan 2012
Hi Richard, you can use the approximate relationship between scale and frequency to do this.
Create a signal to illustrate this:
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = zeros(size(t));
x([625,750]) = 2.5;
x = x+ cos(2*pi*100*t).*(t<0.25)+cos(2*pi*50*t).*(t>=0.5)+0.15*randn(size(t));
plot(t,x);
Set up the scale vector and spacing:
ds = 0.15;
J = fix((1/ds)*log2(length(x)/8));
dt = 1/Fs;
scales = 2*dt*2.^((0:J).*ds);
Obtain the CWT and plot the response:
cwtstruct = cwtft({x,0.001},'Scales',scales,'Wavelet','morl');
periods = cwtstruct.scales.*(4*pi)/(6+sqrt(38));
freq = 1./periods;
cfs = cwtstruct.cfs;
contour(t,freq,abs(cfs));
set(gca,'xtick',[0 0.25 0.4 0.5 0.6 0.75 1]); grid on;
xlabel('Time (seconds)'); ylabel('Hz');
0 commentaires
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Continuous Wavelet Transforms dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!