Second Order, Piecewise ODE help
9 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I'm very new to MatLab and need to solve a second order ODE that equals a piecewise function. I've looked up how to solve a second order ODE with ode45 and how to solve a piecewise ODE, but I'm not sure how to combine them. Further, the IVP I need to solve does not have a y' value and I do not know how to deal with that.
The IVP is:
y'' + 4y = g(t), y(0)=y'(0)=0
where: g(t) = 0 in 0<=t<5; (t-5)/5 for 5<=t<10; 1 for t>=10
Thanks in advance, Logan
0 commentaires
Réponse acceptée
Torsten
le 14 Mar 2016
fun=@(t,y)[y(2);-4*y(1)];
y0=[0 0];
tspan=[0 5];
[T1,Y1]=ode45(fun,tspan,y0);
fun=@(t,y)[y(2);-4*y(1)+(t-5)/5;
y0=[Y1(end,1) Y1(end,2)];
tspan=[T1(end) 10];
[T2,Y2]=ode45(fun,tspan,y0);
fun=@(t,y)[y(2);-4*y(1)+1];
y0=[Y2(end,1) Y2(end,2)];
tspan=[T2(end) 20];
[T3,Y3]=ode45(fun,tspan,y0);
Now put T1, T2, T3 and Y1, Y2, Y3 together to get the result of your ODE on [0 20].
Best wishes
Torsten.
Plus de réponses (1)
Torsten
le 16 Mar 2016
Does this work ?
T=vertcat(T1(1:end),T2(2:end),T3(2:end));
Y=vertcat(Y1(1:end,1),Y2(2:end,1),Y3(2:end,1));
plot(T,Y:,1))
Best wishes
Torsten.
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!