Something must be a floating point scalar?

20 vues (au cours des 30 derniers jours)
Mathidiot Superfacial
Mathidiot Superfacial le 14 Mar 2016
Commenté : Walter Roberson le 10 Avr 2022
f=@(x,y) sqrt(9-x.^2-y.^2);
xmax=@(y) sqrt(9-y.^2);
volume=integral2(f,0,xmax,0,3)
But it says XMAX must be a floating point scalar? What's wrong?

Réponse acceptée

James Tursa
James Tursa le 14 Mar 2016
Modifié(e) : James Tursa le 14 Mar 2016
The error message seems pretty clear. The x limits must by scalar values. The y limits can be functions of x. Just rearrange things so that is the case. Since f is symmetric with respect to x and y, you can just switch arguments.
integral2(f,0,3,0,xmax)
  2 commentaires
Mathidiot Superfacial
Mathidiot Superfacial le 14 Mar 2016
what if f is not symmetrical with respect to x and y? Can you still switch like that? for an integral is like SS f(x,y)dxdy, and say there is the code to evaluate like integral2(f,a,b,c,d) then are a and b always the bounds of the inner integral's variable? Or would a and b still be the bounds of x even when I'm trying to evaluate in reverse order like SS f(x,y)dydx ?
Walter Roberson
Walter Roberson le 14 Mar 2016
Modifié(e) : Walter Roberson le 14 Mar 2016
For 2D integrals, theory says that it does not matter which order you evaluate the integration. So define the function handle to be integrated so that the first parameter is the one with fixed bounds and the second parameter is the one with variable bounds. Remember it is not required that x be the first parameter.
f = @(y, x) x.^2 + x.*sin(y).^2;
xmax=@(y) sqrt(9-y.^2);
integral2(f, 0, 3, 0, xmax )

Connectez-vous pour commenter.

Plus de réponses (1)

Albert Justin
Albert Justin le 10 Avr 2022
Enter the function f(x,y)=@(x,y) x.*y
Enter the outer integral lower limit:0
Enter the outer integral upper limit:a
Enter the inner integral lower limit:@(x) x.^2
Enter the inner integral upper limit:@(x) 2-x
i get the same error
  1 commentaire
Walter Roberson
Walter Roberson le 10 Avr 2022
a = 5;
f = @(x,y) x.*y
f = function_handle with value:
@(x,y)x.*y
xmin = 0
xmin = 0
xmax = a
xmax = 5
ymin = @(x) x.^2
ymin = function_handle with value:
@(x)x.^2
ymax = @(x) 2-x
ymax = function_handle with value:
@(x)2-x
integral2(f, xmin, xmax, ymin, ymax)
ans = -1.2823e+03

Connectez-vous pour commenter.

Catégories

En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by