Central difference approximations to estimate a Jacobian matrxi

17 vues (au cours des 30 derniers jours)
Danielle Moore
Danielle Moore le 17 Mar 2016
I have two functions F(x,y) and G(x,y) defined in script files FM.m and GM.m and I need to use central difference approximations to estimate the Jacobian matrix J=[Fx(1,2) Fy(1,2);Gx(1,2) Gy(1,2)] where Fx,Fy,Gx,Gy denotes partial differentiation variable.
The central difference approximation is f'(x)=(f(x+h)-f(x-h))/2h.
Any help would be really appreciated, thanks!

Réponses (1)

Torsten
Torsten le 17 Mar 2016
J(1,1)=(F(x+h,y)-F(x-h,y))/(2*h);
J(1,2)=(F(x,y+k)-F(x,y-k))/(2*k);
J(2,1)=(G(x+h,y)-G(x-h,y))/(2*h);
J(2,2)=(G(x,y+k)-G(x,y-k))/(2*k);
Best wishes
Torsten.

Catégories

En savoir plus sur Linear Model Identification dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by