Can I get rid of this for loop?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have a matrix that has 3 columns that consist of -1, 0, and 1 (let's call them the "level columns"), and a fourth column that contains real numbers (call it the "data column"). For the level columns, I want to find the average of the "-1", "0", and "1" terms in the data column. So for the following matrix,
-1 -1 0 837
-1 0 -1 880
-1 0 1 879
-1 1 0 864
0 -1 -1 834
0 -1 1 833
0 0 0 874
0 0 0 875
0 0 0 876
0 1 -1 860
0 1 1 859
1 -1 0 829
1 0 -1 872
1 0 1 874
1 1 0 856
the -1 average for column 1 would be 865. Is there a way that I can do that all at once, for each level column, and each level column value? Right now, I loop over the level columns and do this:
[mean(testMat(testMat(:,col) == -1,4)) mean(testMat(testMat(:,col) == 0,4)) mean(testMat(testMat(:,col) == 1,4))]
Is there a better way?
Thanks!
0 commentaires
Réponse acceptée
Stephen23
le 18 Mar 2016
Modifié(e) : Stephen23
le 18 Mar 2016
You cannot get rid of the for loop, but you can hide it inside a cellfun call. Note that my answer works for any number of columns, unlike the other solutions.
M = [...
-1 -1 0 837
-1 0 -1 880
-1 0 1 879
-1 1 0 864
0 -1 -1 834
0 -1 1 833
0 0 0 874
0 0 0 875
0 0 0 876
0 1 -1 860
0 1 1 859
1 -1 0 829
1 0 -1 872
1 0 1 874
1 1 0 856 ];
%
[~,~,X] = cellfun(@unique,num2cell(M(:,1:end-1),1),'Uni',0);
N = cellfun(@(s)accumarray(s,M(:,end),[],@mean),X, 'Uni',0);
out = [N{:}]
creates this output matrix, where the rows correspond to [-1;0;1]:
>> out
out =
865 833.25 861.5
858.71 875.71 858.71
857.75 859.75 861.25
0 commentaires
Plus de réponses (2)
Star Strider
le 18 Mar 2016
I would use three concatenated accumarray calls:
M = [-1 -1 0 837
-1 0 -1 880
-1 0 1 879
-1 1 0 864
0 -1 -1 834
0 -1 1 833
0 0 0 874
0 0 0 875
0 0 0 876
0 1 -1 860
0 1 1 859
1 -1 0 829
1 0 -1 872
1 0 1 874
1 1 0 856];
Result = [accumarray(M(:,1)+2, M(:,4), [], @mean), accumarray(M(:,2)+2, M(:,4), [], @mean), accumarray(M(:,3)+2, M(:,4), [], @mean)];
Result =
865 833.25 861.5
858.71 875.71 858.71
857.75 859.75 861.25
Here, the columns correspond to those in ‘M(:,1:3)’ and the rows correspond to ‘[-1; 0; 1]’ respectively.
0 commentaires
Image Analyst
le 18 Mar 2016
If you have the Statistics and Machine Learning Toolbox, you can use grpstats(), but I don't know if it would be any more compact that what you're already doing.
0 commentaires
Voir également
Catégories
En savoir plus sur Logical dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!