jacobian from trigonometric function
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi have made this code to calculate the jacobian but the result presents some complex number
is it because matlab convert trigonometric like (cos = eix+e-ix/2) and if it 's that how can i ha ve a trigonometric expression or is it any bug in the code
syms t1;
syms t2;
syms t3;
syms t4;
T1=[cos(t1) -sin(t1) 0 0;sin(t1) cos(t1) 0 0;0 0 1 0;0 0 0 1];
T2=[cos(t2) -sin(t2) 0 90;0 0 1 0;-sin(t2) cos(t2) 0 0;0 0 0 1];
T3=[cos(t3) -sin(t3) 0 0;0 0 1 70;-sin(t3) -cos(t3) 0 0;0 0 0 1];
T4=[cos(t4) -sin(t4) 0 0;0 0 -1 320;sin(t4) -cos(t4) 0 0;0 0 0 1];
T5=[1 0 0 260;0 0 1 0;0 1 0 0;0 0 0 1];
%calcul
T=T1*T2;
T=T*T3;
T=T*T4;
T=T*T5;
px=T(1,4);
py=T(2,4);
pz=T(3,4);
psi=atan2(-T(2,3),T(3,3));
a=(T(2,3)*T(2,3))+(T(3,3)*T(3,3));
phi=atan2(T(1,3),sqrt(a));
teta=atan2(-T(1,3),T(1,1));
J=jacobian([px,py,pz,psi,phi,teta],[t1,t2,t3,t4]);
0 commentaires
Réponses (2)
Jan
le 19 Mar 2016
What about
syms t1 real
Otherwise Matlab cannot guess that you want to exclude the imaginary part.
0 commentaires
Voir également
Catégories
En savoir plus sur Symbolic Math Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!