GA-Neural Network Hybridization

5 vues (au cours des 30 derniers jours)
Abul Fujail
Abul Fujail le 1 Fév 2012
Commenté : Greg Heath le 30 Jan 2017
How GA can be hybridized with Neural network (with reference to Matlab).
  3 commentaires
Abul Fujail
Abul Fujail le 4 Avr 2012
in='input_train.tra';
p=load(in);
p=transpose(p);
net=newff([.1 .9;.1 .9;.1 .9;.1 .9],[7,1], {'logsig','logsig'},'trainlm');
net=init(net);
tr='target_train.tra';
x=load(tr);
x=transpose(x);
net.trainParam.epochs=600;
net.trainParam.show=10;
net.trainParam.lr=0.3;
net.trainParam.mc=0.6;
net.trainParam.goal=0;
[net,tr]=train(net,p,x);
y=sim(net,p);
Some codes are shown above... i have 4 input vector and 1 target vector... i want to get the optimum weight with GA so that the mean square error between target and neural network predicted result is minimum. Please suggest me how the GA can be added with this neural network code..
thomas lass
thomas lass le 24 Déc 2016
I need the full codes of GA can be hybridized with Neural network

Connectez-vous pour commenter.

Réponse acceptée

Greg Heath
Greg Heath le 3 Fév 2012
I don't see how they can be combined to an advantage.
Just write the I/O relationship for the net in terms of input, weights and output: y = f(W,x). Then use the Global Optimization toolox to minimize the mean square error MSE = mean(e(:).^2) where e is the training error, e = (t-y) and t is the training goal.
Hope this helps.
Greg
  3 commentaires
Shipra Kumar
Shipra Kumar le 30 Jan 2017
Modifié(e) : Shipra Kumar le 30 Jan 2017
greg how can u write y as a function. i am having similar difficulty while implementing ga-nn. would be glad if u could help
Greg Heath
Greg Heath le 30 Jan 2017
y = B2+ LW*tansig( B1 + IW *x);

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by