How it is possible to find the eigenvalues of a 2*2 matrice without using of eigen function?

5 vues (au cours des 30 derniers jours)
Hi every one,
I tried to fine eigenvalues of 2*2 A matrix with det(A-landa*I) and my script is follow as:
clc
clear all
syms landa
a=input('please enter value of a:');
b=input('please enter value of b:');
c=input('please enter value of c:');
d=input('please enter value of d:');
A=[a b; c d]; I=[1 0;0 1]; B=landa*I;
D=det(A-B)
firstly, I defined landa as syms and after finding determinant, with a=1, b=2, c=3 and d=4, the result is 'landa^2 - 5*landa - 2' . (it is a 2 degree polynomial that saved in D)
so my problem is: How I could got the coefficients of this polynomial for finding the landa1 and landa2 as eigenvalues of A matrix?

Réponse acceptée

Torsten
Torsten le 15 Avr 2016
eigenvalues=solve(D==0,landa);
Best wishes
Torsten.
  3 commentaires
Torsten
Torsten le 15 Avr 2016
landa(1)=0.5*(a+d)+sqrt((0.5*(a+d))^2-(a*d-b*c));
landa(2)=0.5*(a+d)-sqrt((0.5*(a+d))^2-(a*d-b*c));
Best wishes
Torsten.
Habib
Habib le 15 Avr 2016
Dear Torsten,
your answers was very very useful, thanks.
best regards
habib

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by