Simpson's Rule
20 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
cee878
le 25 Avr 2016
Réponse apportée : Roger Stafford
le 25 Avr 2016
I coded Simpson's Rule, but I'm not sure if it's right.
f = @(x) exp(-x.^2);
true = integral(f, 0, 1);
%simpson's rule
n = 128;
k= n/2;
a = 0; b = 1;
h = (b-a)/n;
x = a + h;
sum1 = (h/3)*(f(b)+ f(a));
sum1 = sum1 + (4*h/3)*f(x);
for j = 1:n-1
x1 = a+(2*j)*h;
x2 = a + (2*j+1)*h;
sum1 = sum1 + (2*h/3)*f(x1)+(4*h/3)*f(x2);
end
error1 = abs(true-sum1);
fprintf(' Simpsons %d : %0.8f \n', n, sum1);
fprintf('Simpsons Error: %0.8f \n', error1);
1 commentaire
Geoff Hayes
le 25 Avr 2016
Chris - what makes you think that the algorithm has been coded incorrectly? Presumably you must have a set of test data that you will use to validate the above. What do you notice when you do so?
Réponse acceptée
Roger Stafford
le 25 Avr 2016
I think you made an error on the line
for j = 1:n-1
It should be
for j = 1:k-1
where k = n/2. As it stands now, the x2 reaches a value of a+(2*n-1)*h which is far beyond the range from 0 to 1.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!