Need help to overcome this error 'Dimensions of matrices being concatenated are not consistent.' Any idea/comment is appreciated!
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
JayashP
le 17 Mai 2016
Commenté : Walter Roberson
le 18 Mai 2016
I have the following code:
phi1_12 = 0;
phi1_13 = 0;
A = pi;
a = cos(A/2);
b = -1i*sin(A/2);
ai = cos(A/2);
bi = -b;
S = @(theta)sin(theta);
C = @(theta)cos(theta);
zeta = 1;
ep1_12 = exp(1i*phi1_12);
ep1_13 = exp(1i*phi1_13);
ep1_12c = exp(-1i*phi1_12);
ep1_13c = exp(-1i*phi1_13);
ep2_12 = @(phi2_12)exp(1i*phi2_12);
ep2_13 = @(phi2_13)exp(1i*phi2_13);
%
ep2_12c = @(phi2_12)exp(-1i*phi2_12);
ep2_13c = @(phi2_13)exp(-1i*phi2_13);
%
ep3_12 = @(phi3_12)exp(1i*phi3_12);
ep3_13 = @(phi3_13)exp(1i*phi3_13);
%
ep3_12c = @(phi3_12)exp(-1i*phi3_12);
ep3_13c = @(phi3_13)exp(-1i*phi3_13);
%
ep4_12 = @(phi4_12)exp(1i*phi4_12);
ep4_13 = @(phi4_13)exp(1i*phi4_13);
%
ep4_12c = @(phi4_12)exp(-1i*phi4_12);
ep4_13c = @(phi4_13)exp(-1i*phi4_13);
%
ep5_12 = @(phi5_12)exp(1i*phi5_12);
ep5_13 = @(phi5_13)exp(1i*phi5_13);
%
ep5_12c = @(phi5_12)exp(-1i*phi5_12);
ep5_13c = @(phi5_13)exp(-1i*phi5_13);
U1 = @(theta)[a,b.*ep1_12.*C(theta),b.*ep1_13.*S(theta);-bi.*ep1_12c.*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi1_12-phi1_13)).*S(theta).*C(theta);-bi.*ep1_13c.*S(theta),(ai - zeta).*exp(1i.*(phi1_12-phi1_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U2 = @(theta,phi2_12,phi2_13)[a,b.*ep2_12(phi2_12).*C(theta),b.*ep2_13(phi2_13).*S(theta);-bi.*ep2_12c(phi2_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi2_12-phi2_13)).*S(theta).*C(theta);-bi.*ep2_13c(phi2_13).*S(theta),(ai - zeta).*exp(1i.*(phi2_12-phi2_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U3 = @(theta,phi3_12,phi3_13)[a,b.*ep3_12(phi3_12).*C(theta),b.*ep3_13(phi3_13).*S(theta);-bi.*ep3_12c(phi3_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi3_12-phi3_13)).*S(theta).*C(theta);-bi.*ep3_13c(phi3_13).*S(theta),(ai - zeta).*exp(1i.*(phi3_12-phi3_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U4 = @(theta,phi4_12,phi4_13)[a,b.*ep4_12(phi4_12).*C(theta),b.*ep4_13(phi4_13).*S(theta);-bi.*ep4_12c(phi4_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi4_12-phi4_13)).*S(theta).*C(theta);-bi.*ep4_13c(phi4_13).*S(theta),(ai - zeta).*exp(1i.*(phi4_12-phi4_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
U5 = @(theta,phi5_12,phi5_13)[a,b.*ep5_12(phi5_12).*C(theta),b.*ep5_13(phi5_13).*S(theta);-bi.*ep5_12c(phi5_12).*C(theta),ai.*C(theta).^2 + zeta.*S(theta).^2,(ai - zeta).*exp(-1i.*(phi5_12-phi5_13)).*S(theta).*C(theta);-bi.*ep5_13c(phi5_13).*S(theta),(ai - zeta).*exp(1i.*(phi5_12-phi5_13)).*S(theta).*C(theta),ai.*S(theta).^2 + zeta.*C(theta).^2];
%
%
%
%
U = @(theta,phi2_13,phi2_12,phi3_12,phi3_13,phi4_12,phi4_13,phi5_12,phi5_13)U5(theta,phi5_12,phi5_13)*U4(theta,phi4_12,phi4_13)*U3(theta,phi3_12,phi3_13)*U2(theta,phi2_12,phi2_13)*U1(theta);
sel = @(U,r,c)U(r,c); % indexing the U(2,1) matrix element
U21 = @(theta,phi2_13,phi2_12,phi3_12,phi3_13,phi4_12,phi4_13,phi5_12,phi5_13)sel(U(theta,phi2_13,phi2_12,phi3_12,phi3_13,phi4_12,phi4_13,phi5_12,phi5_13),2,1);
N = 5;
t = pi/4;
%
% x = zeros(20);
for i = 1:N
phi1 = i*pi/N;
for j = 1:N
phi2 = j*pi/N;
for k = 1:N
phi3 = k*pi/N;
for l = 1:N
phi4 = l*pi/N;
for m = 1:N
phi5 = m*pi/N;
for n = 1:N
phi6 = n*pi/N;
for o = 1:N
phi7 = o*pi/N;
for p = 1:N
phi8 = p*pi/N;
J(i,j,k,l,m,n,o,p) = abs((1/t)*integral(@(theta)real(U21(theta,phi1,phi2,phi3,phi4,phi5,phi6,phi7,phi8)),0,t) - real(U21(0,phi1,phi2,phi3,phi4,phi5,phi6,phi7,phi8))) + abs((1/t)*integral(@(theta)abs(U21(theta,phi1,phi2,phi3,phi4,phi5,phi6,phi7,phi8)),0,t) - 1);
end
end
end
end
end
end
end
end
I already added '.*' and '.^' instead of * and ^ but still I am confused why the matrices are not consistent. I had checked them individually like for U1,U2... they do work!.. but there's problem while integrating it inside the for loop.
0 commentaires
Réponse acceptée
Walter Roberson
le 18 Mai 2016
For scalar-valued problems, the function y = fun(x) must accept a vector argument, x, and return a vector result, y
Your U1 through U5 functions are constructing arrays of results which do not take into account that theta will not be a scalar.
2 commentaires
Walter Roberson
le 18 Mai 2016
U = @(th, phi2_13, phi2_12, phi3_12, phi3_13, phi4_12, phi4_13, phi5_12, phi5_13) arrayfun( @(theta) U5(theta,phi5_12,phi5_13) * U4(theta,phi4_12,phi4_13) * U3(theta,phi3_12,phi3_13) * U2(theta,phi2_12,phi2_13) * U1(theta), th) ;
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Loops and Conditional Statements dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!