Problems with solve command.

1 vue (au cours des 30 derniers jours)
mattyice
mattyice le 19 Mai 2016
Commenté : John D'Errico le 26 Mai 2016
Hello,
I am trying to solve the following code for x. According to the attached plot, x should be ~1.3
however, using the solve command gives me this error:
Warning: The solutions are parameterized by the symbols: k, z1.
To include parameters and conditions in the solution, specify the 'ReturnConditions' option.
> In solve>warnIfParams (line 500)
In solve (line 356)
In HW5 (line 27)
Warning: The solutions are valid under the following conditions: exp(log(z1) + k*pi*2i) ~=
-661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304256/2969614242875447
& in(k, 'integer') & (z1 == root(z^3 +
(661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304256*z^2)/2969614242875447
-
(7389015366435323967908908022371910771811603653921098701335406985236788968973433234508946305610994222893417207445031565100274626525888048356861860564629277155285935890388881077320961676529455407039532535682776566997321416812576672328618134497918976*z)/8552739147866811329799841636241
-
5572448313541411075572754442691595320934361841848741683192517222247028915535681815974691113703119944719040419346258432307987094672556923829465808318357201252183187273097626875632198907520424901383961794447304103842444201755391556919461542396321333248/8552739147866811329799841636241,
z, 1) | z1 == root(z^3 +
(661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304256*z^2)/2969614242875447
-
(7389015366435323967908908022371910771811603653921098701335406985236788968973433234508946305610994222893417207445031565100274626525888048356861860564629277155285935890388881077320961676529455407039532535682776566997321416812576672328618134497918976*z)/8552739147866811329799841636241
-
5572448313541411075572754442691595320934361841848741683192517222247028915535681815974691113703119944719040419346258432307987094672556923829465808318357201252183187273097626875632198907520424901383961794447304103842444201755391556919461542396321333248/8552739147866811329799841636241,
z, 2) | z1 == root(z^3 +
(661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304256*z^2)/2969614242875447
-
(7389015366435323967908908022371910771811603653921098701335406985236788968973433234508946305610994222893417207445031565100274626525888048356861860564629277155285935890388881077320961676529455407039532535682776566997321416812576672328618134497918976*z)/8552739147866811329799841636241
-
5572448313541411075572754442691595320934361841848741683192517222247028915535681815974691113703119944719040419346258432307987094672556923829465808318357201252183187273097626875632198907520424901383961794447304103842444201755391556919461542396321333248/8552739147866811329799841636241,
z, 3)).
To include parameters and conditions in the solution, specify the 'ReturnConditions' option.
> In solve>warnIfParams (line 507)
In solve (line 356)
In HW5 (line 27)
-----------------------------------------------------------------------------------------------------------------
Here is the code:
syms x
Econv=1.60218*10^-19; %%J/eV
Eg=1.11 %%Bandgap energy in eV
k=(1.38064852*10^-23)/Econv; %%Bolzmann Constant in eV/K
m0=9.109*10^-31; %%Mass of electron
mn=1.1*m0; %%Mass of e carrier
mp=0.58*m0; %%Mass of e hole
Eion=0.045;
hbar=1.054571800*10^-34; %Planck's constant in Js
T=50; %Temperature range in K
Nd=((10^15)*(100)^3); %%#Donors/m^3
Nc=2.*(mn*Econv*k.*T./(2*pi*hbar^2)).^(3/2);
Nv=2.*(mp*Econv*k.*T./(2*pi*hbar^2)).^(3/2);
Eiv=Eg/2+(3/4)*k.*T.*log(mp/mn);
ni=((Nc.*Nv).^(1/2)).*exp(-Eg./(2*k.*T));
p=ni.*exp(-x./(k.*T)).*(exp(Eiv./(k.*T)));
Ndion=Nd./(1+exp(x./(k.*T)).*exp((Eion-Eg)./(k.*T)));
LHS=p.*(p+Ndion);
Efv=solve(LHS==(ni.^2),x);

Réponse acceptée

John D'Errico
John D'Errico le 19 Mai 2016
Modifié(e) : John D'Errico le 19 Mai 2016
Looks like you defined T in the comments.
Anyway, time to learn what vpa does for you.
vpa(Efv)
ans =
1.0706432917519708822549379645966 - 4.6193018557455934635744555230166e-41i
You probably need to get better at reading plots too. Your guess of 1.3 is not that close. :)
  3 commentaires
Walter Roberson
Walter Roberson le 25 Mai 2016
double(Efv) does not show any imaginary component.
Your form is a cubic; the general solution to a cubic involves sqrt(-1) that might or might not cancel out. The roots of the cubic are in the order of 10^108, so you have a lot of potential for round-off error to affect the result such that the sqrt(-1) is not exactly balanced. Indeed, until you use at least 111 digits of computation, you do not even get the right integer portion of the third root (which is about -754); using only the default 32 digits the third root comes out about -10^77.
John D'Errico
John D'Errico le 26 Mai 2016
The analytical solution to a polynomial uses complex arithmetic, because, well, there are often complex roots. A numerical solver won't generate a complex root, but then it won't be analytical.
The fact that the imaginary term had an attached power of 10^-41 should be a good hint that it really is not there. Just an artifact of floating point arithmetic, an illusion, a phantom of mathematical computation.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by