How does the MATLAB calculate the arctan?

13 vues (au cours des 30 derniers jours)
Vahid
Vahid le 9 Fév 2012
Modifié(e) : Marc le 7 Oct 2013
Hello all,
I have solved an initial value problem and I have gotten the following equation for that:
theta=(c_0/c_1)- (2/c_1)*atan( exp(-a*c_1*t)*tan((c_0-c_1*theta_0)/2) )
where
c_0=7*pi/6; c_1=0.3; a=0.055; theta_0=0;
and
t=[0:0.01:100];
I do expect the MATLAB returns theta=0 for t=0. In other words what I expect to see is:
theta(1)=0
because for t=0, the first equation can be simplified and as a result we have: theta=theta_0 : independent of c_0,c_1(~=0),and a.
but MATLAB returns something else:
theta(1)=20.9440
I would be grateful if somebody could explain me how I can get what I expect to get?
thanks a lot, Vahid

Réponse acceptée

Matt Tearle
Matt Tearle le 9 Fév 2012
All inverse trigonometry functions return to a specific limited range, because trig functions are periodic. Hence, if x = 9*pi/2, then sin(x) will be 1, so asin(sin(x)) will be pi/2, not 9*pi/2. That's what's happening here -- atan returns values between -pi/2 and pi/2 (see doc atan):
(c_0-c_1*theta_0)/2 % ans = 1.8326 > pi/2
tan((c_0-c_1*theta_0)/2)
atan(tan((c_0-c_1*theta_0)/2))
atan(tan((c_0-c_1*theta_0)/2)) + pi

Plus de réponses (1)

Wayne King
Wayne King le 9 Fév 2012
Why do you think it simplifies like that?
for t=0 and theta_0= 0, your expression evaluates to
(c_0/c_1)- (2/c_1)*atan(tan(c_0/2))
which is 20.9440
  3 commentaires
Vahid
Vahid le 9 Fév 2012
Since we have: atan(tan(arg))=arg and because of that I think the answer should be
(c_0/c_1)- (2/c_1)*(c_0/2)
which is equal to 0!
Wayne King
Wayne King le 9 Fév 2012
Oh, I see :), yes, then what Matt said.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by