adding two different distributions example:Gaussian and Poisson distribution

7 vues (au cours des 30 derniers jours)
Anusha S S
Anusha S S le 6 Juin 2016
Commenté : Torsten le 8 Juin 2016
if we add two different distributions namely gaussian which as mean and standard deviation as variables and Poisson distribution with lambda variable how to mathematically relate the resultant distribution(What distribution the resulting value will take) and how to code it
  1 commentaire
Image Analyst
Image Analyst le 8 Juin 2016
What does "relate" mean to you? The new distribution will be the sum of the two you summed. What else do you need to know?

Connectez-vous pour commenter.

Réponses (1)

Torsten
Torsten le 6 Juin 2016
Modifié(e) : Torsten le 6 Juin 2016
If X ~ Poisson(lambda), Y ~ N(mu,sigma^2), X, Y independent and Z=X+Y, then the cdf of Z is given by
P(Z<=z) = sum_{k=0}^{k=oo} P(X=k) * P(Y<=z-k).
P(X=k) = lambda^k/k! * exp(-lambda)
P(Y<=z-k) = 0.5*(1+erf((z-k-mu)/sqrt(2*sigma^2))) (erf: error function)
If needed, you can get the pdf of Z by differentiating the sum with respect to z.
Best wishes
Torsten.
  3 commentaires
Torsten
Torsten le 8 Juin 2016
So to get the cfd F_Z of Z=X+Y, you have to evaluate the infinite sum
F_Z(z)= sum_{k=0}^{k=Inf} lambda^k/k!*exp(-lambda)*0.5*(1+erf((z-k-mu)/sqrt(2*sigma^2)))
for different values of z.
Make an attempt. If it does not work, post the code with the error message you get.
Best wishes
Torsten.

Connectez-vous pour commenter.

Tags

Aucun tag saisi pour le moment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by