How to define a path of vehicle
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I would like to find an approach to define a path of vehicle in path-length coordinate.
As input I have an array of Cartesian coordinates (X, Y). I need to convert it to some function (object) which allow me to get a curvature of path, X, Y as functions of path length. Also there is a issue that I have a closed path like the following:
What can I use for such task?
0 commentaires
Réponses (1)
Anurag Ojha
le 13 Août 2024
Hey Alexandr
Kindly go through the MATLAB code below that defines a path of vehicle in path-length coordinate.I have take certain assumptions while answering. Kindly make changes as per your use case.
% Example input: closed wavy path
theta = linspace(0, 2*pi, 100);
X = cos(theta) + 0.2 * sin(5 * theta);
Y = sin(theta) + 0.2 * cos(5 * theta);
% Ensure X and Y are column vectors
X = X(:);
Y = Y(:);
% Step 1: Calculate path lengths
path_lengths = calculate_path_lengths(X, Y);
% Step 2: Interpolate coordinates
[X_interp, Y_interp] = interpolate_coordinates(path_lengths, X, Y);
% Generate a dense set of path lengths for smooth plotting
s_dense = linspace(0, path_lengths(end), 1000);
% Interpolated coordinates
X_dense = X_interp(s_dense);
Y_dense = Y_interp(s_dense);
% Compute curvature along the dense path lengths
curvatures = arrayfun(@(s) compute_curvature(X_interp, Y_interp, s), s_dense);
% Plot the original path and the interpolated path
figure;
subplot(2, 1, 1);
plot(X, Y, 'ro-', 'LineWidth', 2, 'DisplayName', 'Original Path');
hold on;
plot(X_dense, Y_dense, 'b-', 'LineWidth', 1.5, 'DisplayName', 'Interpolated Path');
legend;
xlabel('X');
ylabel('Y');
title('Path Interpolation');
grid on;
axis equal;
% Plot curvature along the path length
subplot(2, 1, 2);
plot(s_dense, curvatures, 'k-', 'LineWidth', 1.5);
xlabel('Path Length (s)');
ylabel('Curvature');
title('Curvature along the Path');
grid on;
% Function to calculate path lengths
function path_lengths = calculate_path_lengths(X, Y)
distances = sqrt(diff(X).^2 + diff(Y).^2);
path_lengths = [0; cumsum(distances)];
end
% Function to interpolate coordinates
function [X_interp, Y_interp] = interpolate_coordinates(path_lengths, X, Y)
X_interp = @(s) interp1(path_lengths, X, s, 'pchip', 'extrap');
Y_interp = @(s) interp1(path_lengths, Y, s, 'pchip', 'extrap');
end
% Function to compute curvature
function curvature = compute_curvature(X_interp, Y_interp, s)
dx = derivative(X_interp, s);
dy = derivative(Y_interp, s);
ddx = derivative(X_interp, s, 2);
ddy = derivative(Y_interp, s, 2);
curvature = (dx .* ddy - dy .* ddx) ./ (dx.^2 + dy.^2).^(3/2);
end
% Function to compute derivatives
function d = derivative(f, s, n)
if nargin < 3
n = 1;
end
h = 1e-6;
d = zeros(size(s));
for i = 1:length(s)
if n == 1
d(i) = (f(s(i) + h) - f(s(i) - h)) / (2 * h);
elseif n == 2
d(i) = (f(s(i) + h) - 2 * f(s(i)) + f(s(i) - h)) / (h^2);
end
end
end
I hope this resolves your query.
0 commentaires
Voir également
Catégories
En savoir plus sur Interpolation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!