Constraining inputs to a maximum radius within fmincon objective function
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am trying to optimize an objective function of a 5D circle
c=[1,2,3,2,1];
r=[0,0,0,0,0] % begin from origin
maxRadius=3;
fun = @(x) -sqrt(c.*(r+abs(x)).^2); % Negative to make minimal
% Such that:
sqrt(sum(x.^2)) <= maxRadius
I'm getting hung up on the constraint on x... Where can I plug this in to fmincon? is fmincon the appropriate solver for this?
1 commentaire
Matt J
le 18 Août 2016
Note, fmincon expects differentiable functions and constraints. Your 'fun' objective is non-differentiable in the vicinity of x=0 and of fun=0. Likewise with your constraints. You can mitigate this by removing the unnecessary square roots,
sum(x.^2) <= maxRadius.^2
and so forth.
Réponse acceptée
Alan Weiss
le 25 Juil 2016
See the documentation for nonlinear constraints and, if necessary, the Getting Started example showing how to include the constraint in a call to fmincon.
Alan Weiss
MATLAB mathematical toolbox documentation
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!