how to solve differential equations
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi, I'm trying to solve these differential equations with ode45, but i I don't understand how to enter the boundary conditions.
Th,in end tc,in are constant
Could you help me about it? Thank you
4 commentaires
Torsten
le 26 Juil 2016
solinit = bvpinit(linspace(0,L,100),[Th_in Tc_in Th_in Tc_in Th_in Tc_in Th_in Tc_in Th_in Tc_in]);
Best wishes
Torsten.
Réponses (1)
Torsten
le 26 Juil 2016
function main
L=...;
Th_in = 20;
Tc_in = 5;
solinit = bvpinit(linspace(0,L,100),),[Th_in Tc_in Th_in Tc_in Th_in Tc_in Th_in Tc_in Th_in Tc_in]);
sol=bvp4c(@ex1ode,@(T0,TL)ex1bc(T0,TL,Th_in,Tc_in),solinit);
function dydx=exlode(x,T)
dydx=[(T(2)-T(1)
T(1)+T(3)-2*T(2)
-(T(2)+T(4)-2*T(3))
-(T(3)+T(5)-2*T(4))
T(4)+T(6)-2*T(5)
T(5)+T(7)-2*T(6)
-(T(6)+T(8)-2*T(7))
-(T(7)+T(9)-2*T(8))
T(8)+T(10)-2*T(9)
T(9)-T(10)];
function res=ex1bc(T0,TL,Th_in,Tc_in)
res=[T0(1)-Th_in
T0(2)-Tc_in
TL(3)-TL(1)
TL(4)-TL(2)
T0(5)-T0(3)
T0(6)-TL(4)
TL(7)-TL(5)
TL(8)-TL(6)
T0(9)-T0(7)
T0(10)-T0(8)];
Best wishes
Torsten.
5 commentaires
Torsten
le 27 Juil 2016
This is an initial-value problem.
Use ODE45 instead of BVP4C to solve
dT/dx = -N*U/L * T^2 T(x=0) = 40
( Solution is T(x)=1/(1/40+N*U/L * x) )
Best wishes
Torsten.
Voir également
Catégories
En savoir plus sur Boundary Value Problems dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!