Using Solve function for polynomial
8 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Alireza Lashgary
le 1 Août 2016
Modifié(e) : John D'Errico
le 1 Août 2016
Hi there I want to solve an equation below but i faced a problem.

i tried to solve this with following code but it did not works:

i already have Fc and m , i tried to find nc Please Help
1 commentaire
Réponse acceptée
John D'Errico
le 1 Août 2016
Modifié(e) : John D'Errico
le 1 Août 2016
You cannot use solve to solve this because in general there is no exact solution. (And polynomials are still not involved.)
I suppose, if you want to use the extension of factorial into the real line using the special function gamma:
factorial(x) = gamma(x+1)
then you can write it as:
Fc - gamma(m+1)/(gamma(nc+1)*gamma(m-nc+1)) + nc == 0
but even here there will be no analytical solution.
syms nc
m = 5;
Fc = 8;
solve(Fc - gamma(m+1)/(gamma(nc+1)*gamma(m-nc+1))+nc,nc)
Warning: Cannot solve symbolically. Returning a numeric approximation instead.
> In solve (line 303)
ans =
2.7090797227280332212966072765956
I could have used fzero too there. Although there are many values of m for which fzero might fail due to numerical problems. Factorials get really large, really fast. But fzero will work here, using gamma:
fzero(@(nc) Fc - gamma(m+1)/(gamma(nc+1)*gamma(m-nc+1)) + nc,3)
ans =
2.70907972272803
>> fzero(@(nc) Fc - gamma(m+1)/(gamma(nc+1)*gamma(m-nc+1)) + nc,1.5)
ans =
2
It turns out, there are multiple solutions to your problem.
1 commentaire
John D'Errico
le 1 Août 2016
Modifié(e) : John D'Errico
le 1 Août 2016
Sorry, I originally misread your question. I've now fixed my response.
But no. There are at least TWO solutions to the problem.
ezplot(@(nc) Fc - gamma(m+1)./(gamma(nc+1).*gamma(m-nc+1)) + nc)
grid on

2 is one solution. But 2.709... is the second solution, as you can see from the plot.
Plus de réponses (1)
Walter Roberson
le 1 Août 2016
syms nc
solve(Fc == factorial(m) / (factorial(nc)*factorial(m-nc)) - nc)
Voir également
Catégories
En savoir plus sur Polynomials dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
