using ode 45 to estimate the derivative
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Bob
le 8 Août 2016
Réponse apportée : Azzi Abdelmalek
le 8 Août 2016
Question: Use ode45 to estimate y'(3), where y is the solution to the initial value problem y" + (1/t)*y = 0 ; y(0) = 0, y'(0) = 2. Note I'm asking for an estimate of the derivative, not the function itself.
Attempted code:
ode = @(t, y) [y(2) ; (1/t)*y(1)];
[t, y] = ode45(ode, [-1, 3], [0, 2]);
y(end, 1);
I do not think this actual estimating the derivative y'(3)?
1 commentaire
Torsten
le 8 Août 2016
1. y''=-1/t*y, thus
ode = @(t, y) [y(2) ; -(1/t)*y(1)];
2. Why do you start integration at t=-1 if your initial conditions are given at t=0 ?
3. Your y(1) is the solution of the ODE y''+1/t*y=0, your y(2) is its derivative ... So to estimate the derivative at t=3, you will have to evaluate y(2) there.
Best wishes
Torsten.
Réponse acceptée
Azzi Abdelmalek
le 8 Août 2016
ode=@(t, x) [x(2) ; -(1/t)*x(1)];
[t, x] = ode45(ode, [-1, 3], [0, 2]);
y=x(:,1)
dy=x(:,2)
out=dy(3)
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!