Fitting a function to data (fminsearch) with limits
121 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
loes visser
le 30 Août 2016
Réponse apportée : Stefan Schuberth
le 8 Nov 2022
Hey!
I try to fit a model to measured data. I already got a real close with the fminsearch option. However, I know the model will never fit completly to the measured data. I know the range wherein the unknown factors should be, how can I include this in the function.
This is a part of my code;
p= [0.31;114;3.5];
y2=fitfunc(TempZone1day,TempZone2day,TempZone3day,TempZone4day,TempZone5day,buitenTempday,FlowZone1day,FlowZone2day,FlowZone3day,FlowZone4day,KNMIwindday,SMA,p);
figure(1)
plot(tijd,WarmteCvday,'+',tijd,y2,'-')
a0=p;
aBest = fminsearch(@(a) SumErrfun1(a,TempZone1day,TempZone2day,TempZone3day,TempZone4day,TempZone5day,buitenTempday,FlowZone1day,FlowZone2day,FlowZone3day,FlowZone4day,KNMIwindday,SMA,WarmteCvday,tijd),a0);
disp(aBest)
For example, I know that p(1) should be within 0.1-0.5, p(2) within 100-200 and p(3) within 2-6. Because now aBest (the best combination) is [-0.0328; 61.8202; 0.4375], which is not even a possible option. How can I include these ranges?
0 commentaires
Réponse acceptée
John D'Errico
le 30 Août 2016
Modifié(e) : John D'Errico
le 30 Août 2016
fminsearch has no capability to take bounds on the search. If the objective is such that a better result lies outside of where you want it, too bad. :)
Having said that, you can use fminsearchbnd , a tool found on the file exchange. It does allow bounds on the variables. Just download and install that tool on your search path, then use it instead.
Plus de réponses (3)
Jie Jian
le 9 Jan 2020
Or you can use the function 'mapping_parameters.m' to transfer unbounded parameters to bounded ones
0 commentaires
kursat cihan
le 30 Août 2020
John D'Errico....much love from Germany, helped me a lot!!!
Bachelor Thesis in Material Modelling, used it for a parameter optimization in bringing simulations together with experimental data...PEACE
1 commentaire
Stefan Schuberth
le 8 Nov 2022
you can use q=f1*atan(p)+f2 to construct a limited parameter q from an unlimited parameter p :)
0 commentaires
Voir également
Catégories
En savoir plus sur Nonlinear Optimization dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!