How do I write the code for open luup nd closed luup ?

1 vue (au cours des 30 derniers jours)
Pablo Escobar
Pablo Escobar le 19 Sep 2016
To simulate the open loop and closed loop dynamic behavior of STHE

Réponse acceptée

Pablo Escobar
Pablo Escobar le 19 Sep 2016
Modifié(e) : per isakson le 19 Sep 2016
The answer for open luup is :-
clc
close all
clear all
h = 0.5; %in minutes
run_count = 201; %time count
%FIXED PARAMETERS
cp = 1; %cal/gm C
rho = 1e6; %gm/cubic meters
cpc = 1; %cal/gm C
rhoc = 1e6; %gm/cubic meters
a = 1.41e5;
b = 0.5;
Tcs = 25;
%VARYING PARAMETERS
v = 3.5; %cubic meters
fs = 0.085; %cubic meters/min
fcs = 0.44; %cubic meters/min
Ths= 150;
alp = fs/v;
beta1 = a*fcs^(b+1)/(rho*cp*v);
beta2 = a*fcs^b/(2*rhoc*cpc);
beta = beta1/(fcs + beta2);
Ts = (alp*Ths + beta*Tcs)/(alp + beta);
Tc = Tcs; %constant
Th = Ths*ones(run_count,1); %disturbance
f = fs*ones(run_count,1); %disturbance
fc = fcs*ones(run_count,1); %manipulated variable
t = zeros(run_count,1);
T = Ts*ones(run_count,1);
noise_std = 0.07;
Tm = zeros(run_count,1);
Tm(1) = T(1) + noise_std*randn;
%introduction of disturbance
n = input('Specify the variable for introducing step change. \n Enter 1 for coolant flow rate. \n Enter 2 for inlet stream temperature.\n');
step_time = 21;
if n == 1
delta_fc = 0.1*fcs; % introducing +10% change in flow rate
fc(step_time:end) = delta_fc + fc(step_time:end);
else
delta_t = +10; %introducing a +10 deg. C change in inlet temperature
Th(step_time:end) = Th(step_time:end) + delta_t;
end
for k = 1:run_count-1
alp_ = f(k)/v;
beta1_ = a*fc(k)^(b+1)/(rho*cp*v);
beta2_ = a*fc(k)^b/(2*rhoc*cpc);
beta_ = beta1_/(fc(k) + beta2_);
T(k+1) = T(k) + h*[alp_*(Th(k) - T(k)) - beta_*(T(k) - Tc)];
Tm(k+1) = T(k+1) + noise_std*randn;
t(k+1)=k*0.5;
end
set(0,'DefaultLineLineWidth',2)
set(0,'DefaultaxesLineWidth',2)
set(0,'DefaultaxesFontSize',16)
set(0,'DefaultTextFontSize',16)
set(0,'DefaultaxesFontName','arial')
figure(1), plot(t, T,'b', t, Tm, 'g',t, Ts*ones(run_count,1),'r'), grid;
xlabel('Time (min)')
ylabel('STHE Temperature (deg C)')
title('Controlled Output (T)')
legend('True Temperature','Measured Temperature','Initial S.S. Temperature')
figure(2), stairs(t, fc), grid;
xlabel('Time (min)')
ylabel('Coolant Flow (cubic meters/min)')
title('Manipulated Input (F_c)')
figure(3), stairs(t, Th), grid;
xlabel('Time (min)')
ylabel('Inlet Stream Temperature (deg C)')
title('Disturbance (T_h)')
diff = [mean(Tm(end-10:end))-mean(Tm(1:10))];
delta = 0.63*diff*ones(run_count,1);
figure(4), plot(t, Tm - Ts,'b' ,t, delta,'r'), grid;
xlabel('Time (min)')
ylabel('Deviation STHE Temperature (deg C)')
title('Deviation Controlled Output (T)')
legend('Measured Output','63.2% of Change in Output')
figure(5), stairs(t, fc-fcs), grid;
xlabel('Time (min)')
ylabel('Deviation Coolant Flow (cubic meters/min)')
title('Deviation Manipulated Input (Fc)')
figure(6), stairs(t, Th - Ths), grid;
xlabel('Time (min)')
ylabel('Deviation Inlet Temperature (deg C)')
title('Deviation Disturbance (T)')
clc
if n == 1
K_mani = diff/delta_fc
else
K_dist = diff/delta_t
end

Plus de réponses (2)

Pablo Escobar
Pablo Escobar le 19 Sep 2016
Modifié(e) : per isakson le 19 Sep 2016
The answer for closed luup is :-
clear all
clc
close all
% Initia;lizing of variables
% set sampling time / integration interval & simulation runtime
int_T = 0.5; % Integration interval/sampling time = 0.5 min
run_count = 201; % Simulation time count
%Initializing of Model parameters
STHE.V = 2.1; % Volume of STHE (m3)
STHE.Cp = 1.0; % Cp vale (cal/g-C)
STHE.rho = 10^06; % Density (g/m3)
STHE.Cpc = 1.0; % Cp vale of coolant (cal/g-C)
STHE.rhoc = 10^06; % Density of coolant (g/m3)
STHE.a = 1.41*(10^5); % Heat transfer eqn parameter (cal/min-C)
STHE.b = 0.5; % Heat transfer eqn parameter
%Define steady state input values at desired operating point
STHE.Ths = 150; % Hot fluid inlet temperature (C)
STHE.Fs = 0.085; % Hot fluid inlet flow rate
STHE.Tcins = 25; % Coolant temperature (C)
STHE.Fcs = 0.5; % Coolant flow rate
%Find steady state value of state varaible/ controled output
alfa = STHE.Fs/STHE.V ;
num = STHE.a*STHE.Fcs^(STHE.b+1)/(STHE.rho*STHE.Cp*STHE.V);
Den = STHE.a*STHE.Fcs^STHE.b/(2*STHE.rhoc*STHE.Cpc);
beta = num /(STHE.Fcs + Den);
STHE.Ts = (alfa*STHE.Ths + beta*STHE.Tcins)/(alfa+beta);
% define initial state for dynamic simulation
STHE.Tcin = STHE.Tcins; %initial coolant temp(assumed constant)
STHE.F = STHE.Fs*ones(run_count,1); %Inlet hot fluid flow rate(disturbabnce)
STHE.Th = STHE.Ths*ones(run_count,1); %hot fluid temp(dist)
STHE.Fc = STHE.Fcs*ones(run_count,1); %initial cooant flow(manipulated i/p)
Time(1) = 0;
STHE.T(1) = STHE.Ts; %Initliaize the 1st element in temp array
noise_std=0.07; %Standard deviation of measurement noise
STHE.Tm(1) = STHE.T(1) + noise_std*randn; %1st temp measurement
% PID Controller Parameters
PID.Kc = -1/20 ; % From direct synthesis method (from open loop expt)
% PID.Kc = input('Enter the Kc value obtained from open loop simulation : \n');
PID.Ti = 10 ; % From direct synthesis method (from open loop expt)
% PID.Ti = input('Enter the Ti value obtained from open loop simulation : \n');
PID.error = zeros(run_count,1);
PID.ip_max = 2 * STHE.Fcs; % Upper bound on manipulated input
PID.ip_min = 0.0001 ; % Sure to put 0??
fprintf('\n\n\t Closed loop Dynamic Simulation \n\n\t')
change_type = input('Specify your choice :: \n PRESS 1 for Servo case \n PRESS 2 for Regulatory case \n\n' ) ;
setpoint = STHE.Ts * ones(run_count,1) ;
if ( change_type ==1 )
delta_setpt = 5 ; % Introduce setp change (SERVO)
step_time = 21 ;
setpoint(step_time:end) = setpoint(step_time:end) - delta_setpt;
elseif (change_type ==2)
delta_Th = 10; % Introduce step change (REGULATORY)
step_time = 21 ;
STHE.Th(step_time:end) = STHE.Th(step_time:end) + delta_Th ;
else
fprintf('This is not a correct choice, please choose between 1 and 2 \n');
break
end
% Closed Dynamic Simulation Loop
for k =1 :run_count-1
% Controller calculations at instant t = k*T
error(k) = setpoint(k) - STHE.Tm(k) ; % Calculate controlled error
if ( k>1 )
% PI Controller Calculations
P_contribution = PID.Kc * (error(k) - error(k-1) ) ;
% I_contribution = (PID.Kc*int_T / PID.Ti) * error(k) ;
I_contribution = 0;
delta_Fc = P_contribution + I_contribution ;
STHE.Fc(k) = STHE.Fc(k-1) + delta_Fc ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The IF-ELSE loop is provided to ensure that the measured value stick in
% the limited span (between the MAX and the MIN values)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (STHE.Fc(k) > PID.ip_max)
STHE.Fc(k) = PID.ip_max ;
elseif (STHE.Fc(k) < PID.ip_min)
STHE.Fc(k) = PID.ip_min ;
end
end
%Process simulation from time t=k*t to t =(k+1)*T using explicit eulter
%integration
Time(k+1)=k*int_T;
alfa=STHE.F(k)/STHE.V;
num = STHE.a*STHE.Fc(k)^(STHE.b+1)/(STHE.rho*STHE.Cp*STHE.V);
Den = STHE.a*STHE.Fc(k)^STHE.b/(2*STHE.rhoc*STHE.Cpc);
beta = num/(STHE.Fc(k)+Den);
%Compute Derivation at t=time(k)
STHE.Q=beta*(STHE.T(k) - STHE.Tcin);
dT_by_dt= alfa*(STHE.Th(k) - STHE.T(k))-STHE.Q;
STHE.T(k+1) = STHE.T(k) + int_T*dT_by_dt; %Euler integration
%Generate teperature measurement corrupted with noise
STHE.Tm(k+1) = STHE.T(k+1)+noise_std*randn;
end
% Display simulation results
%Initalize plotting style
set(0,'DefaultLineLineWidth',2)
set(0,'DefaultaxesLineWidth',2)
set(0,'DefaultaxesFontSize',16)
set(0,'DefaultTextFontSize',16)
set(0,'DefaultaxesFontName','arial')
% DISPLAY SIMULATION RESULTS %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DISPLAYING RESULTS IN ABSOLUTE VALUES
figure(1)
plot(Time,setpoint,'--',Time,STHE.T,'-',Time,STHE.Tm,'-.'),grid
xlabel('Time(min)')
ylabel('STHE temperature (deg C)')
title('Controlled output (T)')
legend('Setpoint','True output','Measured output')
figure(2)
stairs(Time,STHE.Fc),grid
xlabel('Time(min)')
ylabel('Coolant flow (m3/s)')
title('Manipulated input (F_c)')
figure(3)
stairs(Time,STHE.Th),grid
xlabel('Time(min)')
ylabel('Hot fluid inlet temperature (deg C)')
title('Disturbance (T_h)')
% DISPLAYING RESULTS IN PERTURBATION VALUES
figure(4)
plot(Time,setpoint - STHE.Ts,'--',Time,STHE.T - STHE.Ts,'-',Time,STHE.Tm - STHE.Ts,'-.'),grid
xlabel('Time(min)')
ylabel('Deviation in STHE temperature (deg C)')
title('Deviation in Controlled output (T)')
legend('Setpoint','True output','Measured output')
figure(5)
stairs(Time,STHE.Fc - STHE.Fcs),grid
xlabel('Time(min)')
ylabel('Deviation in Coolant flow (m3/s)')
title('Deviation in Manipulated input')
figure(6)
stairs(Time,STHE.Th - STHE.Ths),grid
xlabel('Time(min)')
ylabel('Deviation in Hot fluid inlet temperature (deg C)')
title('Deviation in Disturbance')
%%%%%%%
% END %
%%%%%%%

Pablo Escobar
Pablo Escobar le 19 Sep 2016

Catégories

En savoir plus sur General Applications dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by