How do I plot/solve the phase portrait for functions with a range?

1 vue (au cours des 30 derniers jours)
Afthab
Afthab le 20 Oct 2016
Commenté : Mischa Kim le 20 Oct 2016
For example, if I have the following differential equation x'' = k
where k is equal to -r when x>0 r when x<0
How would I solve the above using ode45.
In this case there is a constant "r" (arbitrary), how would I use ode45 to solve that?
Shown below is my attempt at trying to at least form the graph of one equation (but I can't get MATLAB to reproduce the analytical solution). I'm quite new to this so any help would be appreciated.
f = @(t,y) [y(2);-r];
hold on
for y20=[0 0.2 0.4 0.6 2]
[ts,ys] = ode45(f,[0,20],[0;y20]);
plot(ys(:,1),ys(:,2))
end
hold off

Réponse acceptée

Mischa Kim
Mischa Kim le 20 Oct 2016
Afthab, see this answer.
  4 commentaires
Afthab
Afthab le 20 Oct 2016
Modifié(e) : Afthab le 20 Oct 2016
x>0, so the solution should look something like this based on the hand analytical solution.
Mischa Kim
Mischa Kim le 20 Oct 2016
Gotcha. Try this:
function my_DE()
x0 = 0;
Dx0 = 0.2;
r = 1;
tspan = linspace(0,2,100);
options = odeset('RelTol',1e-8,'AbsTol',1e-10);
[~,X] = ode45(@DE, tspan,[x0; Dx0],options,r);
plot(X(:,1),X(:,2))
grid
end
function dX = DE(~,x,r)
dX = [x(2); k(x(1),r)];
end
function fval = k(x,r)
if (x < 0)
fval = +r;
else
fval = -r;
end
end
This needs some fine tuning.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Aucun tag saisi pour le moment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by