Syntax for solving linear equations
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Alexander Kjærsgaard
le 31 Oct 2016
Commenté : Torsten
le 2 Nov 2016
I have found out that I have phased my problem less complicated then I think it is, so I'll try again. I have a set of data points on my y-axis which has the expression: a-x*b-c*y
(a,b,c are constants, x and y are the variables to be optimized)
In an ideal case of x and y, this expression equals a straight line
a-x*b-c*y=d*z+e
(d and e are constant),
I want x and y to fit this straight line the best, so I want to optimize:
abs( a-x*b-c*y- (d*z+e) ) = 0 with the conditions (x,y >= 0 and x,y =< 1)
0 commentaires
Réponse acceptée
John D'Errico
le 31 Oct 2016
Modifié(e) : John D'Errico
le 31 Oct 2016
Hmm. I'm not sure what the other solvers are seeing in your question that I don't. Here is your question:
a-x*b-c*y (where a,b and c are constants).
Is minimized under the conditions that: x,y >= 0 and x,y =< 1
so, for given KNOWN constants, you want to solve for x and y. This is just a basic linear programming problem.
Note that a is irrelevant, since if you find the min of -b*x-c*y, the location does not change regardless of the value of a. Just set up linprog, assuming that you have the optimization toolbox.
TRY IT!
xy = linprog([-b,-c],[],[],[],[],[0 0],[1 1]);
3 commentaires
John D'Errico
le 1 Nov 2016
Yes, completely so, because the objective is no longer linear. So linprog is now invalid for use directly. Depending on the values for a,b,c, and the ranges for x and y, that objective will now be piecewise linear, with a derivative discontinuity along a line. So most optimizers may have problems if you just fed them that problem.
So instead, use linprog, but solve it two times, with a linear inequality constraint, once with
a-x*b-c*y >= 0
and a second time with
a-x*b-c*y <= 0
Then take the better of the two solutions.
Torsten
le 2 Nov 2016
The problem remains linear if you formulate it as
min: eps
a-x*b-y*c <= eps
a-x*b-y*c >= -eps
x,y >= 0
x,y <= 1
using linprog.
It's data fitting in the l_oo norm.
Best wishes
Torsten.
Plus de réponses (2)
Voir également
Catégories
En savoir plus sur Linear Least Squares dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!