how to properly implement K values in 4th order Runge-kutta (RK4)
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
just want to know If I am proper implementing these K eqns I'm not sure if I'm actually taking a slope estimate at each time step so some help would be nice
if true
%begin creating K1s to create intermediate F values
k11 = F2(i);
k12 = 2*F4(i) - f*F2(i) +F1(i) - mu2*(F1(i)+mu1)/(((F1(i)+mu1)^2 + F2(i)^2)^1.5) - mu1*(F1(i)-mu2)/(((F1(i)-mu2)^2 + F3(i)^2)^1.5);
k13 = F4(i);
k14 = -2*F2(i) - f*F4(i) + F3(i) -mu2*F3(i)/(((F1(i)+mu1)^2 + F3(i)^2)^1.5) - mu1*F3(i)/(((F1(i)-mu2)^2 + F3(i)^2)^1.5);
%initialize values for intermediate F equations (intermediate slopes)
F1tmp(i) = F1(i) + (dt/2)*k11;
F2tmp(i) = F2(i) + (dt/2)*k12;
F3tmp(i) = F3(i) + (dt/2)*k13;
F4tmp(i) = F4(i) + (dt/2)*k14;
%create K2s for next intermediate F values
k21 = F2tmp(i);
k22 = 2*F4tmp(i) - f*F2tmp(i) +F1tmp(i) - mu2*(F1tmp(i)+mu1)/(((F1tmp(i)+mu1)^2 + F2tmp(i)^2)^1.5) - mu1*(F1tmp(i)-mu2)/(((F1tmp(i)-mu2)^2 + F3tmp(i)^2)^1.5);
k23 = F4tmp(i);
k24 = -2*F2tmp(i) - f*F4tmp(i) + F3tmp(i) -mu2*F3tmp(i)/(((F1tmp(i)+mu1)^2 + F3tmp(i)^2)^1.5) - mu1*F3tmp(i)/(((F1tmp(i)-mu2)^2 + F3tmp(i)^2)^1.5);
% code
end
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!