ANN for constraint optimization problem

2 vues (au cours des 30 derniers jours)
studentU
studentU le 27 Nov 2016
Modifié(e) : studentU le 1 Déc 2016
hello,
How do i modify my ANN algorithm, by incorporating some constraints to perfom my obtained result. the matlab code used is generated from Neural Network Toolbox.
function [Y,Xf,Af] = ANN_Function(X)
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [-0.964339227389144;-0.906927494859787;-0.9643288955237];
x1_step1_gain = [1.03826501814344;1.06861700687107;1.27340625419393];
x1_step1_ymin = -1;
% Layer 1
b1 = [-1.3371193654695128217;-3.7243723447930885406;0.59020209217794505907;-0.26942 281438778381553;-0.084790990077469749475;-0.287833517416886564;-0.6199588700217847359;0.87036361559242081398;1.1136596091577191103;3.5728692098803582766];
IW1_1 = [0.62172489473929637427 -1.1539538428995010921 0.40749280432490736503;0.33504097052172682192 2.2754223181903578954 -2.0670552187061321803;-0.97421719994837163714 0.16930737512492399777 0.95638889040809083042;3.453458645614659428 2.4120651149524281465 3.9342055592145062093;2.9998512477370034013 2.2723487424133810286 3.3571622229587347874;-1.6838243946405258011 -2.3995748128279066336 0.36244936598086713309;-3.1423700210823852785 1.3845185332230820485 2.4609517018642876884;-0.39703700607817143942 2.4912130193995269956 -0.16941481846512243536;1.406655675671569572 0.92534256006865256428 0.64325984129225455277;1.5085377777493140794 1.4551527878904193525 -1.3090133612083598713];
% Layer 2
b2 = [-0.28647967632293369622;-0.77689684809120063136;0.23567045137827014045;-0.50614562961496167848;0.17775471570313430836;0.39409286123122444501;-0.23743319675300361693];
LW2_1 = [-1.2595809845665446591 0.52253536564831837286 1.6575450213582203496 1.4444644615739332671 -0.79927746466752380705 -0.49440949393277561219 -1.0291039534117272236 -0.10205229528755178914 -1.783179386992490123 0.012007511957539542674;-1.8160587258194498261 0.16525212307258660416 -0.35634974797682900105 0.61911944611294977836 -0.55104180525241264199 0.36270218166368617396 0.70227078264624087645 -0.69192422904692441055 0.63741286998972901401 0.078380036138073788665;-0.39987089599785630156 0.0015263660888982231219 -0.32703999255710186622 -1.0870691355791675115 0.68183572942635206626 0.20086063975571505358 0.53707692508704663048 -0.043958739282595582498 0.30170293659756891591 -0.40387165805595148793;-0.42538078713443683299 -0.41243046298959784579 0.09360967585146644232 -0.54902810742656438237 0.27858672713463300541 0.13466521369669071095 -0.31684402239022979586 -0.016110146899087046668 0.18209067234932024837 -0.38144681930811946691;0.78489623544097297803 0.064197561813166229006 -0.14703146723552590336 0.045763727795912277629 -0.044493781097574965078 0.023102496123388799321 0.19498160438730580135 0.42399577006788119471 0.068627392557574939946 0.2774573470874529546;0.28300904777281810087 -0.040045961378933660202 -0.048322484065649526364 0.23633721304470370339 -0.28761021912207535012 0.22386822762508534757 -0.095795332741767574847 0.31901549272383256106 0.17453188621906071121 -0.40095786179528114523;0.2537157491011907684 -0.037837226082635302959 -0.044856312727524147443 0.24018253583883578117 -0.28974054247799801987 0.23561178051146219881 -0.095989508380685484301 0.30576014862164185848 0.18195538033206490325 0.22157365239611195862];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [1.21212121212121;1.53846153846154;0.8;3.33333333333333;1.66666666666667;2;2];
y1_step1_xoffset = [-0.785398163397448;-0.523598775598299;-0.261799387799149;-0.174532925199433;-0.349065850398866;-0.523598775598299;-0.523598775598299];
% ===== SIMULATION ========
% Format Input Arguments
isCellX = iscell(X);
if ~isCellX, X = {X}; end;
% Dimensions
TS = size(X,2); % timesteps
if ~isempty(X)
Q = size(X{1},1); % samples/series
else
Q = 0;
end
% Allocate Outputs
Y = cell(1,TS);
% Time loop
for ts=1:TS
% Input 1
X{1,ts} = X{1,ts}';
Xp1 =
mapminmax_apply(X{1,ts},x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
Y{1,ts} =
mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
Y{1,ts} = Y{1,ts}';
end
% Final Delay States Xf = cell(1,0); Af = cell(2,0);
% Format Output Arguments if ~isCellX, Y = cell2mat(Y); end end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) y = bsxfun(@minus,x,settings_xoffset); y = bsxfun(@times,y,settings_gain); y = bsxfun(@plus,y,settings_ymin); end
% Sigmoid Symmetric Transfer Function function a = tansig_apply(n) a = 2 ./ (1 + exp(-2*n)) - 1; end
% Map Minimum and Maximum Output Reverse-Processing Function function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) x = bsxfun(@minus,y,settings_ymin); x = bsxfun(@rdivide,x,settings_gain); x = bsxfun(@plus,x,settings_xoffset); end
  2 commentaires
Greg Heath
Greg Heath le 29 Nov 2016
Why are you dissatisfied with your current code?
Greg
studentU
studentU le 1 Déc 2016
Modifié(e) : studentU le 1 Déc 2016
Thank you for your repply,
The current code is made in general case without take into account my fitness function and constraints to obtain the optimal solution!!!
it's work well, but i want to modify it in order to incorpor the constraints.... how can i do it? is it the recurent neural network the best solution in neural network constraint optimizing? Do you have some idea to this perpose?

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Genomics and Next Generation Sequencing dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by