Taylor and Euler Method for ODE

9 vues (au cours des 30 derniers jours)
LoveMatlab
LoveMatlab le 2 Déc 2016
Modifié(e) : Nusaybah Ar le 8 Jan 2020
y'-sin(4t)=0 y(0)=-0.25. 1. Use Taylor method to solve up to t4 for 20 steps, h=0.1.
  1 commentaire
James Tursa
James Tursa le 2 Déc 2016
What have you done so far? What specific problems are you having with your code?

Connectez-vous pour commenter.

Réponse acceptée

James Tursa
James Tursa le 2 Déc 2016
MATLAB is a 0-based indexing language. So you can't have y(0) in your code. It will need to start at y(1).
y(1)= -0.25;
Also, you need to index into your t vector as t(i):
Dy(i)=sin(4*t(i));
  4 commentaires
Hanaa Yakoub
Hanaa Yakoub le 31 Déc 2019
how do you do it for 20 steps if you are only going up to the fourth derivative?
Nusaybah Ar
Nusaybah Ar le 8 Jan 2020
Modifié(e) : Nusaybah Ar le 8 Jan 2020
I've attempted this question for the taylor method and can't seem to be getting an answer. How do i fix this code? Thanks.
h = 0.1; %Time Step
a = 0; %Starting t
b = 2; %Ending t
n = 20; %Number of Iterations
y(i) = -0.25; %Initial Condition
y1=sin(4*t)
y2=4*cos(4*t)
y3= -16*sin(4*t)
y4=-64cos(4*t)
for i = 0:h:2
y(i+1) = y(i) + y1*h + ((y2/factorial(2))*h.^2) +((y3/factorial(3))*h.^3)+(y4/factorial(4)*h.^4)
end

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by