how to plot a tangent line of specific point (x,y) of function y=x^2+2?

31 vues (au cours des 30 derniers jours)
Tsvi Weiss
Tsvi Weiss le 10 Déc 2016
Commenté : Sam Chak le 19 Avr 2025
I trying to obtain the tangent equation and draw the line from specific points (x,y) of the function y=x^2+2 and show them on a figure.

Réponse acceptée

Image Analyst
Image Analyst le 10 Déc 2016
Try this:
x = linspace(-2, 2, 500);
y = x .^ 2 + 2;
plot(x, y, 'b-', 'LineWidth', 2);
grid on;
fontSize = 20;
xlabel('X', 'FontSize', fontSize);
ylabel('Y', 'FontSize', fontSize);
ylim([0, 7]);
% Pick a point at -1 (or wherever) and plot the tangent
xTangent = -1;
% Equation of the tangent is y = slope*x + offset
% From the equation y=x^2 we know the slope is 2*x.
% Find the slope at x = xTangent.
slope = 2 * xTangent;
% We want to plot the tangent line where it just touches the curve,
% so we need to know the y value at xTangent.
yTangent = xTangent .^ 2 + 2; % Y value of curve at x = xTangent.
hold on;
plot(xTangent, yTangent, 'r*', 'LineWidth', 2, 'MarkerSize', 10);
% Use point slope formula of a line to get equation for y
% y-y0 = slope*(x-x0).
% y = slope * (x - xTangent) + yOffset
yTangentLine = slope * (x - xTangent) + yTangent;
plot(x, yTangentLine, 'b-', 'LineWidth', 2);
  2 commentaires
Hadgh
Hadgh le 19 Avr 2025

y'=e^x

Sam Chak
Sam Chak le 19 Avr 2025
@Hadgh, This looks like a differential equation and it is unstable because the rate of change is growing exponentially for x.
In fact, such exponential function is also infinitely differentiable. You can take the derivative of the exponential function an infinite number of times, and the result will always be another exponential function.
Wanna try it in MATLAB?
syms f(x)
f = exp(x)
f = 
df = diff(f)
df = 
d2f = diff(df)
d2f = 
d3f = diff(d2f)
d3f = 

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by