mldivide algorithm for sparse matrices
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
In the documentation of the mldivide function, two flow charts report the steps used by MATLAB to decide which method to apply in order to solve the linear system Ax=b with A\b. When A is sparse, if A is not diagonal, the algorithm asks:
"Does A look triangular (Upper or lower bandwidth of 0)?"
If YES, then
"Is A actually triangular (diagonal is structurally nonzero)?"
If NO then
"Is A permuted triangular?"
I am not able to imagine a non diagonal, permuted triangular matrix having 0 upper/lower bandwidth. Any suggestion?
0 commentaires
Réponses (1)
Sally Al Khamees
le 22 Déc 2016
Let matrix A =
1 0 0
2 3 1
4 1 0
Then A looks triangular (upper bandwidth of 0).
A is not actually a triangular matrix because A(2,3) is not 0
A is a permuted triangular. If you switch row 2 with row 3 then A becomes
1 0 0
4 1 0
2 3 1
You can also refer to "LU matrix factorization" documentation page for example of functions that return permuted lower triangular matrix
Voir également
Catégories
En savoir plus sur Sparse Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!