Gradient function of matlab
11 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Can someone please explain how gradient function works? (say, how is dx1(1,2)==0.5)
>> a=[1 3 2 11 18; 7 14 9 5 10; 15 7 13 18 9; 19 12 17 7 14 ]
a =
1 3 2 11 18
7 14 9 5 10
15 7 13 18 9
19 12 17 7 14
>> [dx1 dy1]=gradient(a)
dx1 =
2.0000 0.5000 4.0000 8.0000 7.0000
7.0000 1.0000 -4.5000 0.5000 5.0000
-8.0000 -1.0000 5.5000 -2.0000 -9.0000
-7.0000 -1.0000 -2.5000 -1.5000 7.0000
dy1 =
6.0000 11.0000 7.0000 -6.0000 -8.0000
7.0000 2.0000 5.5000 3.5000 -4.5000
6.0000 -1.0000 4.0000 1.0000 2.0000
4.0000 5.0000 4.0000 -11.0000 5.0000
0 commentaires
Réponse acceptée
David Young
le 9 Mar 2012
The basic operation is to take half the difference between the two values on either side of the point you are considering. For example,
dx1(2,2) = 0.5 * (a(2,3) - a(2,1)) (i.e. 0.5*(9-7))
and
dx2(2,2) = 0.5 * (a(3,2) - a(1,2)) (i.e. 0.5*(7-3))
So for your example, dx1(1,2) = 0.5 * (2 - 1).
This has to be a little different for points on the edge of the matrix when a neighbouring value is not available. In these cases the single sided difference is taken, so for example
dx1(3,1) = a(3,2) - a(3,1) (i.e. 7-15)
If you are familiar with convolution, dx1 is just
conv2(a, [0.5 0 -0.5])
except for the left and right columns, and dy1 is
conv2(a, [0.5 0 -0.5].')
except for the top and bottom rows.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Operating on Diagonal Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!