Calculation of dead time and time constant for non linear system

19 vues (au cours des 30 derniers jours)
Ahmed Abdelfattah
Ahmed Abdelfattah le 9 Mar 2012
Réponse apportée : Ashim le 22 Sep 2017
Hello ,
I am simulating a non linear system on simulink . I used the scope to show the output and saved the output signal with time to the workspace . Is there any function to calculate the dead time and time constant given the output with time ?

Réponses (3)

surya
surya le 9 Mar 2012
Calculation of dead time is a bit debatable aspect, you might want to look at a data based approach, like system identification.. System delay calculation. Might not be very accurate.. but gives an approximate idea.

Rajiv Singh
Rajiv Singh le 16 Mar 2012
Delays are not necessarily separable from system dynamics such as effect of poles and zeros on the response. However, in many cases, DELAYEST in System Identification Toolbox works fine to deliver delays as number of multiples of data sample time. See also http://www.mathworks.com/products/sysid/demos.html?file=/products/demos/shipping/ident/iddemo3.html
  1 commentaire
Ashim
Ashim le 22 Sep 2017
you can easily perform the time constant analysis on the output, if you know the objective non-linear function
options = optimoptions(...); % select the options that match your data
objfcn = @(y,t) y(1) + y(2)*(1-exp(y(3)*t)) - yobs; % objective function for time constant where y2 is usually the differential. use Taylor series to construct such an equation
y0 = [y10, y20, y30]; initial guesses
lb = [10, 10, 1]...; %lower bound
ub = [100, 100, 10]; % upper bound
[haty, resnorm, res, output, exitflag] = lsqnonlin(objfcn, y0, lb,
ub, options); non-linear least squares fitting

Connectez-vous pour commenter.


Ashim
Ashim le 22 Sep 2017
you can easily perform the time constant analysis on the output, if you know the objective non-linear function
options = optimoptions(...); % select the options that match your data
objfcn = @(y,t) y(1) + y(2)*(1-exp(y(3)*t)) - yobs; % objective function for time constant where y2 is usually the differential. use Taylor series to construct such an equation
y0 = [y10, y20, y30]; initial guesses
lb = [10, 10, 1]...; %lower bound
ub = [100, 100, 10]; % upper bound
[haty, resnorm, res, output, exitflag] = lsqnonlin(objfcn, y0, lb,
ub, options); non-linear least squares fitting

Catégories

En savoir plus sur Linear Model Identification dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by