How to curve fit a transcendental function to data?

6 vues (au cours des 30 derniers jours)
Andreas Bovin
Andreas Bovin le 12 Jan 2017
Commenté : Are Mjaavatten le 18 Mai 2018
Hi,
I am trying to curve fit three parameters in a transcendental function to some data, and have searched both Google and MathWorks' fora to find an iterative method. However, so far none have seemed to yield results, or maybe I didn't understand the posted replys..
The function is as follows:
y = B - k1 (x - y/A) - k2 *(1 - exp( -k3(x - y/A)))
I already know the parameters A and B, and want to determine k1, k2 and k3 by fitting to a set of data containing values for x and y.
I have tried to isolate a zero on the left side, and then use the lsqcurvefit function to solve it using the following syntax (taken from one previously mentioned example):
B = 40; %Constants
A = 128e3;
k = [1 1 1]'; %Initial guesses of k1, k2, k3
xdata = epsilon; %x-data of 50 entries
ydata = sigma_matrix(:,5); %y-data of 50 entries
zeroes = zeros(1,length(xdata))'; %array of zeros to find root
predictedzeros = @(k,xdata,ydata) ydata + k1*(xdata-ydata/A) + k2(1-exp(-k3*(xdata-ydata/A))) - B
[ahat,resnorm,residual,exitflag,output,lambda,jacobian] = lsqcurvefit(predictedzeros,k,xdata,zeros(1,length(xdata))')
However, it gives me the following error:
predictedzeros =
@(k,xdata,ydata)ydata+k1*(xdata-ydata/A)+k2(1-exp(-k3*(xdata-ydata/A)))-B
Not enough input arguments.
Error in Fit>@(k,xdata,ydata)ydata+k1*(xdata-ydata/A)+k2(1-exp(-k3*(xdata-ydata/A)))-B
Error in lsqcurvefit (line 202)
initVals.F = feval(funfcn_x_xdata{3},xCurrent,XDATA,varargin{:});
Error in Fit (line 16)
[ahat,resnorm,residual,exitflag,output,lambda,jacobian] = lsqcurvefit(predictedzeros,k,xdata,zeros(1,length(xdata))')
Caused by:
Failure in initial objective function evaluation. LSQCURVEFIT cannot continue.
Does anyone have an idea of how to move forward from this point? I'm not an expert at MATLAB, but you're welcome to throw hardcore work-arounds at me :) I'm pretty frustrated at this point.
Thanks for your help.

Réponse acceptée

Are Mjaavatten
Are Mjaavatten le 13 Jan 2017
Set
k0 = [k1_0;k2_0;k3_0]
to a vector of initial values for your unknown parameters. Write your function as:
predictedzeros = @(k,xdata,ydata) ydata + k(1)*(xdata-ydata/A) + k(2)(1-exp(-k(3)*(xdata-ydata/A))) - B
and write the call to lsqcurvefit as:
k = lsqcurvefit(predictedzeros,k0,xdata,ydata)
You may have to try several initial value vectors.
  4 commentaires
Sankalp Shukla
Sankalp Shukla le 4 Mai 2018
Modifié(e) : Sankalp Shukla le 5 Mai 2018
Hi Are,
I am curious to know as to how the function F posted by Uday is any different from the function predictedzeros posted by Andreas? Doesn't Andreas's predictedzeros function also a function of both xdata and ydata? Thanks.
Are Mjaavatten
Are Mjaavatten le 18 Mai 2018
Sankalp Shukla: Good point!
It seems my answer to Andreas Bovin was too hasty, and lsqcurvefit is not an appropriate tool for neither his nor Uday Saha's problem. The reason is that their expressions cannot be reformulated on the form y = f(k,x).
Using Uday's formula as an example, I would define function F as a function of k:
F=@(k) F = @(k) k(1)-k(2)*exp((xdata+ydata*k(3))/(0.025887*k(4)))...
-((xdata+ydata*k(3))/k(5));
and find the k that minimizes the sum of squares:
where:
by using use lsqnonlin:
kfit = lsqnonlin(F,k0);

Connectez-vous pour commenter.

Plus de réponses (1)

Andreas Bovin
Andreas Bovin le 31 Jan 2017
Hi,
Sorry for my slow response! The problem is solved :) Your post helped me understand how the lsqcurvefit function works, and now it yields good results!
Thank you!

Catégories

En savoir plus sur Get Started with Curve Fitting Toolbox dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by