How to back interpolation to find x from z and y?

15 vues (au cours des 30 derniers jours)
ercan duzgun
ercan duzgun le 15 Fév 2017
Commenté : ercan duzgun le 15 Août 2019
I would like to do "back" interpolation to find an x value from the given values of z and y. (2Dimensional x,y,z matrix table is available). Is there any prepared MATLAB function for it?/ And how to do it in Simulink(Lookup Table Dynamic block is for 1D. I need 2D)?
As an example: x =[01 2 3 4 5]; y=[ 30 40 50 60]
z=[
1 2 3 4 5
3 4 5 6 7
5 6 7 8 10
7 8 10 10 13]
Table=
1 2 3 4 5
---------------
30 ! 1 2 3 4 5
40 ! 3 4 5 6 7
50 ! 5 6 7 8 10
60 ! 7 8 10 10 13
According to this given values, I would like to find the x value for a given data of y=43, and z=6.8
Thanks in advance.

Réponse acceptée

Stephen23
Stephen23 le 15 Fév 2017
Modifié(e) : Stephen23 le 15 Fév 2017
This is easy with interp2 and fzero:
>> X = [1,2,3,4,5]
>> Y = [30,40,50,60]
>> Z = [1,2,3,4,5;3,4,5,6,7;5,6,7,8,10;7,8,10,10,13]
>> y = 43;
>> z = 6.8;
>> fun = @(x)interp2(X,Y,Z,x,y)-z;
>> x = fzero(fun,mean(X))
x = 4.1538
And checking:
>> interp2(X,Y,Z,x,y)
ans = 6.8000

Plus de réponses (2)

John D'Errico
John D'Errico le 15 Fév 2017
Is there something already written in MATLAB to do this? No. Given that your problem is not terribly common, it would be unexpected if it was already written.
Is it possible to do? Yes. Not even that terribly difficult.
You have an array that essentially defines the relation z(x,y).
1. Use interp2 to interpolate the array along the line y = 43, so for each value of x, determine z at the given y value. The result will be a vector of z values, one for each location in x.
2. Find any pairs of locations that cross the desired z level.
3. Interpolate linearly to find x that yields the given z level exactly. (Well, exactly to within the accuracy of linear interpolation.)
  1 commentaire
ercan duzgun
ercan duzgun le 15 Fév 2017
Thank you. Nice programming algorithm.

Connectez-vous pour commenter.


Phillip Resor
Phillip Resor le 14 Août 2019
Just sorted this out using griddedInterpolant and thought others might find it useful
x = [1,2,3,4,5];
y = [30,40,50,60];
[X, Y] = ndgrid(x,y);
Z = [1,2,3,4,5;3,4,5,6,7;5,6,7,8,10;7,8,10,10,13]'; % transpose to match ndgrid
yp = 43;
zp = 6.8;
F = griddedInterpolant(X, Y, Z);
fun = @(xp)F(xp,yp)-zp;
xp = fzero(fun,mean(x))
And checking:
F(xp,yp)
  1 commentaire
ercan duzgun
ercan duzgun le 15 Août 2019
This code also works fine. Thank you Phillip Resor.

Connectez-vous pour commenter.

Catégories

En savoir plus sur Interpolation dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by